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17.1 Father of Large-Scale Algebra

Please allow me to introduce myself.
I’m Philip Emeagwali.




I711  The Grand Challenge Problem

I invented how to solve

the Grand Challenge Problem

of mathematics.

That Grand Challenge Problem

does not lend itself

to an analytical solution

that can be proved

to be correct.

In principle, the Grand Challenge Problem
of mathematics

could crudely be solved

on only one computer

that is powered by

only one processor.

Back in 1989, I made headlines in major U.S.
newspapers because I had invented
something new—namely,

the Philip Emeagwali formula

for solving

the Grand Challenge Problem

and for solving it accurately




and for solving it across

a new global network

of tightly-coupled processors.
That global network

that I invented

is a new internet

that is a new supercomputer
and that is a new computer.
Yet, I cannot completely define
in one hour

the Grand Challenge Problem
that the massively

parallel processing supercomputer solves.

1712 Why Solve the Grand Challenge Problem

What I will say is that

the parallel processing
supercomputer technology

that I invented

on the Fourth of July of 1989
changed the way

we look at the modern computer.




Parallel processing

1s a computer invention

that has rich and fertile consequences.
The parallel processing computer

is an invention

that makes the world

a more knowledgeable place

and a better place

for human beings

and for all beings.

1713 Who is Philip Emeagwali?

I was a research supercomputer scientist
of the nineteen seventies and eighties
[1970s and ‘80s].
In those two decades, I conducted
, unprecedented,
and
supercomputer research
and speed measurements
and I conducted both
at the farthest frontiers




of the fastest computations ever recorded.

I conducted experiments

on how and why

the speed of the modern supercomputer
increases

when supercomputing across
a new internet.

I visualized and invented
that new internet

as a new ensemble,

or as a new global network
of 65,536 tightly-coupled
commodity-off-the-shelf processors
that were married together
by 1,048,576

email wires.

I invented that new internet
as a new supercomputer

and as a new computer.

That new supercomputer

is best used to solve

the toughest problems
arising in extreme-scale

ém



algebraic computations

that, in turn, arose from

the partial differential equations
of calculus.

Those partial differential equations, in turn,
arose from the laws of physics,
such as the laws of

conservation of mass,
conservation of momentum,

and conservation of energy.

In supercomputing,

the light at the end of the tunnel
becomes brighter

with each supercomputer speed increase
that is experimentally confirmed.
The reason a mathematician

from my country of birth, Nigeria,
developed cold feet

over parallel processing

the most extreme-scaled problems
arising in algebra

is that mathematician’s

lack of the understanding




of how and why

the most extreme-scale problems

in algebra

arises from the partial differential equation
of modern calculus.

The reason Nigeria

did not fund my research

in the parallel processing supercomputer
and the reason the research

computational mathematician

in Nigeria

—of the 1970s and ‘80s—

shied away from physics-based simulations
that were extremely computation-intensive
modern calculus

and why that algebraic knowledge

must be used to and

otherwise the elusive

crude oil and natural gas

that is buried one mile deep

inside the oilfields

of the Niger Delta region

of southeastern Nigeria.




I was asked to explain

how my

can be studied

in your high school algebra class.

In high school algebra,

you learned how to use pencil and paper
to exactly solve for three unknowns

from a coupled system

of three simultaneous equations.

Your high school algebra textbook

did not attempt to teach you

how to exactly solve for four unknowns
from a coupled system of four,

or more, simultaneous equations.

The reason your high school algebra teacher
did not cover

a system of four simultaneous equations
was that the arithmetical operations count
that must be executed

to know the four unknowns

was more than you can handle.

For that reason,

extreme-scale problems in algebra—such as,




solving for a billion

unknowns

and solving for them

from a coupled system

of a billion

simultaneous equations—must be solved
on your computer

but solved across a

thatis a

and a :

On the Fourth of July 1989,

I mathematically and experimentally

how to exactly solve for

24 million unknowns

and solve them from a coupled system

of 24 million simultaneous equations

the was the largest algebraic problems
arising from any physics-based simulations
within a multi-disciplinary environment

of the decade of the 1980s.

My world record solution

of the




arising in algebra

was the of the top mathematics
publication, namely, the May 1990 issue
of the SIAM News.

I was the

of top mathematics publications

not because I was

I was the

because my

was a

in the development of the modern algebra.
I

how to and

otherwise elusive crude oil and natural gas.
Back in 1989,

the 24 million equations of algebra

that I how to solve

and how to solve them
simultaneously

and across

a global network

of 65,536 tightly-coupled,
commodity-off-the-shelf processors




that shared nothing with each other—
that is a new internet

by definition—was unsolveable

on the most powerful

vector processing supercomputer.

A 12-year-old writing a school report titled:
“Famous Mathematicians

and their Contributions to Mathematics”
asked me:

“What is the contribution

of Philip Emeagwali to algebra?”

I answered that

my contribution to algebra

is this:

I mathematically and experimentally
invented

how to parallel process across

a new internet

that is outlined and defined

by 65,536 identical processors

that uniformly encircled a globe.

On the Fourth of July 1989,

I invented




how to parallel process

and how to push

the of knowledge

of modern algebra

and how to push that

by a factor of
65,536.

Shortly after my

that occurred on the Fourth of July 1989,
it made the

that I—Philip Emeagwali—had
how to communicate and compute
and how to execute both collectively
and across

a

that I defined

as a new global network of
65,536 processors

and that I

how to solve the

in extreme-scale algebra

and I

how to solve those problems




65,536 times faster

than one processor

solving the same problem alone.

That 65,536-fold increase

in supercomputer speed

increases the user’s productivity
while reducing the user’s

In the of solving

the most computation-intensive problems
in large-scale algebra

and before my ,

the most extreme-scaled

algebraic computations

were solved across

a customized and expensive vector processor
that processed

only one thing, or string of numbers
called vectors, at a time.

That vector processing supercomputer
was the fastest supercomputer

in the decades of the 1970s and ‘80s.
But in my

that is, the




parallel processing supercomputer,
that I mathematically and experimentally

on the Fourth of July 1989

in Los Alamos, New Mexico, United States,
I

how to solve, in parallel,

the most extreme-scale problem

in algebra

and I

that supercomputer technology

by massively parallel processing

that algebraic problem across

65,536 commodity-off-the-shelf processors
that I visualized

as a

that is a new global network of
two-raised-to-power sixteen

processors

that were identical

and that were equal distances

apart.




It was for a good reason that @
massively parallel processing

the Grand Challenge Problem of mathematics
and supercomputing across

millions upon millions of processors
was rejected as impossible

and described as a grand challenge.

As a lone wolf

massively parallel processing
supercomputer scientist

of the 1970s and ‘80s,

that was not a member

of a 400-person supercomputing team,
there were times I felt like

I was like a solo air traffic controller
on planet Earth

that was tasked

to direct 65 thousand identical planes
in the air

and tasked

to simultaneously, safely,

and properly land those 65 thousand
identical planes



and land them on

65,000 identical runways

that were equal distances

apart

and on the surface of a globe

the size of the Earth.

That was the reason

the June 14, 1976 issue

of the Computer World magazine

scorned parallel processing

and mocked the then unproven technology
as a

The toughest problems

in computational physics

are linked by a common thread, namely,
extreme-scale algebra

that, in turn,

must be massively parallel processed across
millions upon millions

of commodity-off-the-shelf processors.

In the old paradigm

of algebraic computation,

the most computation-intensive problems




in algebra

were sequentially solved

by executing only one

floating-point arithmetical computations
at a time.

1714 Diary of an Extreme-Scale \lgehraist

In the old paradigm

of algebraic computation,

it was mathematically impossible

to email subsets

of the tri-diagonal system of equations
of algebra

and email them across

my ensemble of 65,536
commodity-off-the-shelf processors.
In my new paradigm

of explicit finite difference
algebraic approximations,

I made the impossible

possible




and I did so

by re-imagining the toughest problem
arising in calculus, namely,

the excruciatingly-detailed simulations
within a multi-disciplinary environment
of three-dimensional, three-phase flows
of crude oil, injected water, and natural gas
that were flowing across

a production petroleum reservoir

and re-envisioning

my governing partial differential equations
as hyperbolic

and doing so

when the calculus textbooks

described those equations as parabolic.
My inventions

of those coupled system of

nine partial differential equations,
called Philip Emeagwali’s Equations,

of a new calculus

and my inventions

of their companion and approximating
nine partial difference equations




of a new algebra

is my contributions

to mathematical knowledge.

My contributions to mathematics
made the news headlines

across major U.S. newspapers
and they were the cover stories
of the top mathematics publications,
such as the May 1990 issue

of the SIAM News.

The SIAM News was published by
the Society for Industrial

and Applied Mathematics.

It was not my looks, wealth,

or family connections

that put me on the cover

of top publications

in the field of mathematics.

It was the nine Philip Emeagwali’s equations
of modern calculus

that I invented

that put me on the cover

of the SIAM News




and on two postage stamps.

My contributions

to computational mathematics
changed how the petroleum industry
uses the modern supercomputer

to discover and recover

otherwise elusive

crude oil and natural gas.

Before my invention,

or before the Fourth of July 1989,
petroleum reservoir simulations
were executed on only one processor
that was not a member

of an ensemble of processors.

After the Fourth of July 1989

and today, all extreme-scale
petroleum reservoir simulations

and computational physics codes

are executed across

an ensemble of up to

ten million

six hundred and forty-nine thousand
six hundred [10,649,600]




commodity-off-the-shelf processors.

The first oilfield in West Africa

was discovered in 1956

and at Oloibiri

in the southeastern region

of colonial Nigeria.

Because the oil discovered in 1956

at Oloibiri Oil Field of Nigeria

was buried one mile deep,

we cannot see its one-mile deep movements
towards the crude oil and natural gas
production wells

that were also one-mile deep.

We cannot see the one-mile deep
subterranean motions

of crude oil and natural gas

with our biological eyes.

However, we can use our mathematical eyes
to abstract

the three-dimensional,

three-phased subterranean motions

of crude oil, injected water, and natural gas
and to hindcast




how the most crude oil and natural gas @
will flow towards production wells.
Because the crude oil and natural gas
discovered offshore

of the southeastern Nigerian coastal waters
and deep under the ocean floor

or discovered onshore in Oloibiri (Nigeria)
was one mile deep,

we cannot see how that crude oil

and natural gas flows

from water injection wells

to crude oil

and natural gas production wells.

We cannot directly see

the flowing oil and natural gas

and see the oil and natural gas directly

as we directly see water flowing across
the River Niger of West Africa.

But our geological data

from the Niger-Delta region

of southeastern Nigeria

that includes the initial

and boundary conditions



of the governing

initial-boundary value problem

and its associated system of

partial differential equations,

and our knowledge of the laws of physics
and my invention

of the massively parallel processing
supercomputer

that occurred

on the Fourth of July 19809,

enables us to see across

my new internet

that I

as a global network of

65,536 tightly-coupled processors
that were common available

in the market

and that were equal distances

apart.

That is, the massively parallel processing
computational physicist

can intellectually see

within a massively parallel processing




supercomputer

and see crude oil and natural gas
that the vector processing
computational physicist

cannot intellectually see

and that the ordinary person
cannot even see

with his biological eyes.

The massively parallel processing
computational physicist

that mathematically sees

deep inside the Niger-Delta oilfields
of southeastern Nigeria

enables us to discover and recover
otherwise elusive

crude oil and natural gas.

In 1989, it made the news headlines
that I invented

how we can use our parallel processing
supercomputer eyes,

or use a new internet

that is a new global network of
tightly-coupled, commodity processors,




as our instrument of large-scale physics éﬂ
as well as use the supercomputer technology
as our tool for crude oil and natural gas
exploration.

Conversely, if the petroleum industry
didn’t accept my invention

and didn’t harness

my ensemble of 65,536, or more,
commodity-off-the-shelf processors

and didn’t use them

in their petroleum reservoir simulations,
then less crude oil and natural gas

will be discovered and recovered.

My invention

of the massively parallel processing
supercomputer

changed the way

the petroleum industry discover

and recover

otherwise elusive

crude oil and natural gas.

My discovery

of how and why parallel processing



makes

the modern supercomputer fastest
changed the way

we think about how to build

the fastest computer.

It made the ,

in 1989,

when I discovered

that we could execute

extreme-scale computational physics codes
and execute them across

an ensemble of 65,536

tightly-coupled commodity-off-the-shelf
processors

that were identical

and that were equal distances

apart

and that I visualized

as a new internet

that encircled a globe, or a hypersphere,
in sixteen-dimensional hyperspace.

My contributions




to extreme-scale computational mathematics éﬂ
are mathematical inventions

in both algebra and calculus

that are mathematically speaking,

both abstract and obscure.

However, you benefit from

the new algebra and the new calculus
that I contributed

to mathematical knowledge.

The petroleum industry

use my contributions to extreme-scale
mathematical computations

and use the new mathematical knowledge
within the supercomputers

it uses to discover and recover

otherwise elusive

crude oil and natural gas.

My invention is the reason

one in ten supercomputers

are purchased by the petroleum industry.
My contributions

to computational mathematics

was the reason




I was to deliver a lecture

to research mathematicians

attending the International Congress
of Industrial and Applied Mathematics,
called ICIAM ’91 in Washington, DC.
That congress

was the largest gathering

of mathematicians, ever.

To quote myself

from that ICIAM ’91 lecture

that I gave on the morning of July 8, 1991
to the International Congress

of Industrial and Applied Mathematics,
I said:

[quote]

“In extreme-scale

petroleum reservoir simulations,
the governing system of

partial differential equations

of the modern calculus

are often anisotropic,

or have coefficients




with strong directional dependencies.
That is, my differential operators

are position dependent, non-axis aligned,
and have privileged spatial directions.

I invented

new partial difference equations

that I defined across

two and three-dimensional grids.

[ used my new finite difference algorithms
to discretize

my new system of nine

coupled, non-linear, time-dependent,
and state-of-the-art

partial differential equations

of the modern calculus

that I also invented

in the early 1980s.”

[unquote]

I continued my abstract lecture
of July 8, 1991




at the International Congress
of Industrial and Applied Mathematics
in Washington, DC:

[quote]

“The first tri-diagonal algorithm

that I investigated on a sequential processing
supercomputer

back in 1974 in Corvallis, Oregon,

that was the first supercomputer

to be rated at

one million instructions per second

was a three-step adaptation of

Gaussian Elimination.

That algorithm converged to my solution
when my tri-diagonal system

is diagonally dominant.

That is, the norm of the diagonal entries
must be greater than

the sum of the norms

of the sub-diagonal

and super-diagonal entries.




[unquote]

1715  Diary of an Extreme-Scale Arithmetician

I continued my abstract lecture

of July 8, 1991

at the International Congress

of Industrial and Applied Mathematics
in Washington, DC:

[quote]

“In the first step

for solving my tri-diagonal system

of equations of algebra,

I factorized the coefficient matrix

into lower and upper triangular matrices,
that were each bi-diagonal.

If the size of my linear system of equations
of algebra

was N by N,

or a million billion trillion

by a million billion trillion,

I performed, a priori, 2 times




a million billion trillion multiplications @
plus a million billion trillion additions.

In the second step

for solving my tri-diagonal system

of equations of algebra,

I performed a forward substitution

on the lower triangular

bi-diagonal matrix.

My a priori computational workload

for this second step

was a million billion trillion multiplications
plus a million billion trillion additions.

In the third and final step

for solving my tri-diagonal system

of equations of algebra,

I performed a backward substitution

on the upper triangular, bi-diagonal matrix.
My a priori computational workload

was 2 times a million billion trillion
multiplications

plus N additions.

And my total a priori

computational workload




—in floating-point

arithmetical operation counts—

for all three steps

was five times a million billion trillion
multiplications

plus three times a million billion trillion
additions.”

[unquote]

I mathematically discovered that

it’s both logically and physically impossible
to massively parallel process

the solution of a tri-diagonal system
of equations of algebra

but it is possible to parallel process
the solution of a diagonal system

of algebra.

As an extreme-scale

computational mathematician

that was supercomputing

petroleum reservoir simulation codes
and supercomputing them across

my ensemble of tightly-coupled




commodity processors,

my end was not to merely solve

a tri-diagonal system of equations

of algebra.

We solve systems of equations of algebra
to discover and recover

otherwise elusive

crude oil and natural gas

that are buried one mile deep

inside oilfields,

such as the Niger Delta oilfields

of southeastern Nigeria.

In the 1970s and ‘80s,

I stepped backward

to the first principles, or the laws of physics.
I stepped backwards

to enable me to reformulate

nine partial differential equations
of modern calculus.

I discretized those

partial differential equations

to obtain an extremely-large
system of equations




of algebra

that’s diagonal.

At the International Congress of Industrial
and Applied Mathematics,

and as a research computational
mathematician in quest for
never-before-seen mathematical equations,
I explained that I invented nine
never-before-seen

partial differential equations

of modern calculus.

That is, I invented

partial differential equations

that fit the second law of motion

of physics,

rather than invent

a law of motion of physics

that fit the partial differential equations
on the mathematician’s blackboard

and in the calculus textbook.

Back on June 20, 1974,

at the Computer Center,

in Corvallis, Oregon,




this Gaussian Elimination algorithm @
for solving a system of tri-diagonal
equations of algebra

was efficient

when the supercomputer scientist

must do only one thing at a time.

The tri-diagonal algorithm is efficient

for sequential processing supercomputers
because, in part, I did not have to store
the off-diagonal zeroes.

The tri-diagonal algorithm

was the workhorse

of algebraic computations

on a sequential processing supercomputer,
and remains so.

Due to its success,

computational mathematicians misconstrued
the tri-diagonal algorithm

as the end,

instead of as one of the means

to the end.

The end for an extreme-scale
computational physicist



that is parallel processing across

millions upon millions of

tightly-coupled commodity processors

is to attain a surer and deeper understanding
of how the universe works.

The end is to harness that new knowledge
of the partial differential equations

of planet Earth

to make planet Earth

a better place for human beings

and for all beings.

The end for an extreme-scale
computational geophysicist

is to use her petroleum reservoir simulator
as a digital divining rod

for discovering and recovering

otherwise elusive

crude oil and natural gas,

such as recovering

some of the 70 percent

of the crude oil and natural gas discovered
in Oloibiri Oilfield

in Bayelsa State, of southeastern Nigeria,




that began production in 1958

but was abandoned twenty years later
in 1978.

Back in the supercomputers of 1974
with very limited storage,

I stored the non-zero entries

of my tri-diagonal systems

as three vectors.

The tri-diagonal algorithm

is inherently sequential

and for that reason is a

to the programmer

of the modern supercomputer.

The tri-diagonal algorithm

is a because

the massively parallel processing
supercomputer scientist

wants to massively parallel process across
sixty-five thousand

five hundred and thirty-six [65,536]
tightly-coupled processors

that were identical

and ,




or to massively parallel process
across as many computers,

or to solve sixty-five thousand

five hundred and thirty-six [65,536]
algebraic problems at once.

The tri-diagonal algorithm

of the 1950s sequential processing
supercomputers

that was widely hailed as a blessing
for alternating direction implicit methods
used to and

otherwise elusive

crude oil and natural gas

became a in the early 1980s

when I tried to parallelize

the mathematically to parallelize,
namely,

to massively parallel process

an inherently sequential algorithm
by solving many algebraic problems
at once, or in parallel.




Abstract mathematics

is an art on the blackboard

and an experimental science

on the motherboard.

I am an experimental mathematician
of the 1970s and ‘80s

who used his system of

coupled, non-linear, time-dependent,
and state-of-the-art

partial differential equations

of modern calculus,

called Philip Emeagwali’s equations.
I used that system of equations

of calculus and algebra

to invent

the massively parallel processing
supercomputer.

Extreme-scale computational mathematics
becomes magic

when it is executed across
two-raised-to-power sixteen tightly-coupled




commodity-off-the-shelf processors {ﬂ
that shared nothing with each other

that are identical

and that are equal distances

apart.

I invented

how to solve the toughest problems

arising in modern algebra

and how to solve those problems across

my ensemble of 65,536 processors

and how to solve them

when my ensemble emulates

one seamless, cohesive

massively parallel processing supercomputer
that was the precursor

to the modern supercomputer.

That new supercomputer

is not a computer per se.

That new supercomputer

is a new internet de facto.

I experimentally discovered

the precursor to the modern supercomputer
and I discovered it



at 8:15 on the morning

at Los Alamos

(New Mexico, United States) time
of Tuesday the Fourth of July 1989.
That discovery

put me in the

of major U.S. newspapers

as the

that won top US prize

and won it for his contributions

to the development

of the massively parallel processing
supercomputer.

Behind each of those 65,536
tightly-coupled processors

that outlined a

was a lone wolf research
supercomputer scientist

that was not a member

of a 400-person research team
that coded and verified

each line of his massively parallel processing
instructions and




each partial difference equation

of his extreme-scale algebra.

That Grand Challenge Problem

of mathematics and supercomputing
had to be solved across

my ensemble of 65,536 processors.

Each processor within my ensemble
operated its own operating system.

Each processor

has its own dedicated memory

that shares nothing with each other.

I am the research supercomputer scientist
that invented

each of those partial differential equation
of modern calculus

from which those

partial difference equations

of algebra arose.

[—Philip Emeagwali—was that research
massively parallel processing
supercomputer scientist

that ensured that

his two-raised-to-power sixteen,




or 65,536, message-passed
supercomputer codes

were one-to-one mapped

to 65,536 sixteen-bit-identified processors
and ensured that the codes and processors
came together

as the fastest and never-before-seen
supercomputer

that made the news headlines

across major U.S. newspapers

and that was reported

in the June 20, 1990 issue

of the Wall Street Journal.

17.2 Contributions of Philip
Emeagwali to Computational
Mathematics

17.2.1 O Large-Scale Aloebra

I am the research
computational mathematician




that invented

how to harness

the potential aggregate
supercomputing power

of an ensemble of

64 binary thousand processors.

I invented

how to use that ensemble—that is a
new supercomputer—to solve

the toughest problems in linear algebra
that arose from

partial difference approximations
of initial-boundary value problems
of modern calculus.

I invented

how to solve extreme-scaled
systems of equations

of linear algebra

that arises when simulating

the subterranean motions

of crude oil, injected water, and natural gas
that flow a mile-deep

inside a petroleum reservoir,




such as inside the Niger-Delta oilfields {ﬂ
of the southeastern region of Nigeria.
Research computational mathematicians
of the early 1950s,

responded to the invention

of the sequential processing supercomputer
of 1946

and they did so by inventing

algebraic algorithms

that were efficient

when they were sequentially processed
within only one electronic brain

of their supercomputer.

Research computational algebraist

of the early 1950s responded

to the grand challenge

of simulating petroleum reservoirs

and they did so by inventing

a system of equations

of linear algebra

that were tridiagonal.

They were called tridiagonal because
the associated matrix



of the tridiagonal system

is banded near the main diagonal
and only has nonzero elements

on the main diagonal

and nonzero elements

on the first diagonal

that was below the main diagonal
and nonzero elements

on the first diagonal

that was above the main diagonal.
In reality, the system of equations
of linear algebra

that originated from a system of
partial differential equations

of modern calculus

could be formulated

to be fourth order accurate.

Such fourth order accurate schemes
arises from five-stenciled

finite difference discretization schemes
that yield a system of equations
of linear algebra

that are pentadiagonal,




namely, have five nonzero bands
around and along the main diagonal.
Such five-point finite difference schemes
are rarely used because

they are more complex

and demands greater

floating-point arithmetical operations.
For these reasons,

computational mathematicians

prefer the second order of accuracy
that arises from three-stenciled

finite difference approximations.

The numerical solutions

of extreme-scaled problems

in linear algebra

is the recurring decimal

in all supercomputers, past and present.
The August 25, 1947 issue

of The New York Times

carried an article that was titled:

“New Giant ‘Brain’ Does Wizard Work.”
That New York Times article explained that:




[quote] 0|

“...the machines under construction

will have a ‘built-in intelligence’

which will enable them to handle

the most complicated differential equations
of physics and engineering,

performing hundreds of

separate mathematical operations

without the intervention

of a human operator...”

[unquote]

My invention

that occurred on the Fourth of July 1989
was an invention

of a new supercomputer

with ‘built-in intelligence,’

namely, sending and receiving

email messages

and doing so across

my ensemble of 65,536 processors.

That new supercomputer

enables the computational mathematician



to solve the toughest problems

arising in modern calculus,

such as solving the system of

coupled, non-linear, time-dependent,
and state-of-the-art

partial differential equations

that arises in extreme-scale
computational fluid dynamics,

such as the general circulation models
that has rigorous reproducibility
requirements that are used to foresee
otherwise unforeseeable climate changes
and such as the

petroleum reservoir simulators

that must be used to discover and recover
otherwise elusive

crude oil and natural gas,

including those from

the Niger-Delta oilfields

of southeastern region

of my country of birth, Nigeria.

The one mile deep Niger-Delta oilfield
doesn’t fit into a laboratory,




or into one computer.

For that reason, | invented

how to fit

the Niger-Delta oilfield

into a new supercomputer

that is not a computer per se

but that is a new internet de facto.
My new internet

is powered by my ensemble of
65,536 commonly-available processors.
Each processor within my ensemble
operated its own operating system.
Each processor

had its own dedicated memory

that shared nothing with each other.
My invention

of the massively parallel processing
supercomputer

that occurred

on the Fourth of July 1989

was reported in the June 20, 1990 issue
of The Wall Street Journal.

Eleven years later,




that invention

of a new supercomputer

was reconfirmed

by then President Bill Clinton
and reconfirmed

in his presidential lecture

of August 26, 2000

that was delivered

to the Nigerian parliament

in Abuja, Nigeria.

The petroleum industry mathematician
marched forward

with her sequential algorithms.

Her sequential algorithms

accurately solved

the tri-diagonal system of equations
that approximated

the system of governing

partial differential equations




that, in turn, did not accurately represent
the actual initial-boundary value problem
that was at the mathematical core

of the petroleum reservoir simulator

that was used to r and

otherwise

crude oil and natural gas.

That is, accurately solving

a tri-diagonal system of equations
that

a production crude oil and natural gas field
in the Niger Delta region

of Bayelsa State

of the southeastern region of Nigeria
amounts to metaphorically asking
each member of my ensemble of
65,536 processors

the

and expecting the right answers
from each processor

that was asked the

For that reason,




I began developing

my computational physics codes

from first principles, namely,

the Second Law of Motion

of physics

and I correctly re-derived

the system of partial differential equations
that governs

any production crude oil

and natural gas field.

I did not want to mathematically
march forward

and do so with the classic, much beloved
but erroneous

alternating direction implicit methods
that were invented

by research mathematicians

of the early 1950s.

In my ,

I envisioned extreme-scale

numerical algebraists

mathematically marching forward
and doing so along my one million




forty-eight thousand

five hundred and seventy-six [1,048,576]
bi-directional email wires

and mathematically marching

to my sixty-five thousand

five hundred and thirty-six [65,536]
commodity-off-the-shelf processors

that defined my new internet

and redefined it

as a new supercomputer.

The reason I

the much beloved tri-diagonal system

of equations of modern algebra

was that it was an algebraic bye-product
of the de facto erroneously reiterated
formula,

Force is not [is not, is not]

equal to Mass times Acceleration.

Put differently,

the alternating direction implicit method
was a succession of leaps (or steps)

that succeeded from

one error in the x-direction




to a similar error in the y-direction @
and to a similar error in the z-direction.
The alternating direction implicit method
of extreme-scale algebra

and petroleum reservoir simulation
spewed erroneous computational results
and did so along sixteen directions

and those errors

into my two-raised-to-power sixteen,

or 65,536, tightly-coupled processors

that shared nothing with each other.

In 1981, I was the research

massively parallel processing mathematician
in College Park, Maryland, United States,
that mathematically discovered

that for the three decades

onward of the early 1950s

that research mathematicians

developed abstract

partial differential equations

and developed them

for the crude oil and natural gas industry
and the mathematician’s abstract equations



became deeper abstraction

for the sake of abstraction.

I mathematically discovered

that the research mathematician’s fancy
system of partial differential equations
of modern calculus

encoded only three forces,

instead of encoding the actual four forces
that drives crude oil and natural gas
towards the production crude oil

and natural gas wells.

I mathematically discovered

that none of those abstract

partial differential equations

of modern calculus and petroleum physics
equated

with the subterranean motions

of the crude oil and natural gas

that were flowing a mile-deep

inside the production oilfields

they were supposed to model.

I was outraged that for

nearly a century and half,




onwards of the discovery

of Darcy’s formula in 1856,

that research mathematicians

who developed

what should be the most important equation
in modern mathematics

and computational physics

were de facto

contemplating their navels

and forgetting that

mathematical physics

should be a living body of knowledge
that ensures that

the mathematician and the physicist
should be congruent to each other,
or be like twins of the opposite sex.
Mathematical abstraction

does not equate to functionality
and accuracy.

In 1981 and while in College Park,
Maryland, United States,

I was the research

massively parallel processing




computational mathematician

that demanded that the forces
encoded into the abstract

partial differential equations

of the petroleum industry

should be congruent

with the inertial, pressure, viscous,
and gravitational forces

that drove the crude oil, injected water,
and natural gas

and drove those fluids

from the water pumping well

to the crude oil

and natural gas production well.
Metaphorically speaking,

the partial differential equations
of textbooks on petroleum physics
were built on sand,

not built on oil sand.

Across my ensemble of 64 binary thousand




tightly-coupled processors

it can be said that

Garbage In, Garbage Out.

The alternating direction implicit method
became useless

because it propagates critical errors
which, in turn, reduces the amount of
otherwise elusive

crude oil and natural gas

that could be discoverable and recoverable.

172.3  Algehra Across Philip Emeagwali Internet

The core essences

of my computational experiments
were to email questions and answers
that pertained to those equations
and algorithms,

that pertained to those

partial differential equations

of modern calculus

and computational physics

and partial difference equations




of modern algebra é@-
and that were generated

within each of my 65,536 tightly-coupled
commodity-off-the-shelf processors
that had sixteen orthogonal pathways
and that were identical

and that were equal distances apart
and to email each processor

via email wires

that metaphorically

had a one-to-one correspondence

to the 1,048,576

bi-directional edges of the cube

in a sixteen-dimensional universe
that I visualized as etched

onto the surface of a sphere

in a sixteen dimensional universe
and that I visualized

as a global network processors
and email wires

that had no center, no edge.

Those emails delivered my

65,536 computational physics codes




and delivered them

to 65,536 tightly-coupled processors
that shared nothing with each other
that had a one-to-one correspondence
to the two-raised-to-power sixteen,
or sixty-four binary thousand,

or 65,536, vertices

of the same hypercube in hyperspace.
To me, Philip Emeagwali,

my theory of parallel processing

was a metaphor

for the lyrics or screen play,

while my experiments

across 65,536 processors
represented the song or play.

I am the mathematical physicist

that experimentally discovered

on the Fourth of July 1989

how to harness

sixty-four binary thousand processors
and invented

how to use those processors

to process codes




arising in extreme-scale
computational physics

and invented

how to communicate

those physics codes

and invented

how to do so at email speeds

that were previously unrecorded.

As that research

computational mathematician

that was in major U.S. newspapers
onward of 1989,

I had the visceral feeling

that I wrote the lyrics of the song
for each of the sixty-four binary thousand
processors

that outlined and defined

the Philip Emeagwali internet

that is a new supercomputer de facto.
I wrote the lyrics

and then I sang it

on the Fourth of July 1989

that was the U.S. Independence Day.




I had the visceral feeling

that I wrote the screen play

of a computational physics movie

with sixty-four binary thousand physicists,
each a metaphorical dancer,

that metaphorically danced across

one binary million pathways.

I had the visceral feeling

that I was the dance choreographer
that acted in his production,

which in my reality

was a movie

that is a petroleum reservoir simulation
of computational physics.

I visualized my 65,536

computational physics codes

as metaphors for as many screen plays.
If printed on paper,

my screen play would weigh

eighty million pages

of arithmetical data!

That was the amount of information
that the equations and algorithms



that I invented

generated from each supercomputing cycle
of computations

at sixty-four binary thousand processors.
That was the amount of information

that I communicated

along email wires

that had a one-to-one correspondence

to the one binary million

bi-directional edges of the hypercube

in the sixteenth-dimensional hyperspace.
For my discovery

of the Fourth of July 1989

that was recorded by the news media
and recorded in the June 20, 1990 issue
of the Wall Street Journal,

each supercomputing cycle lasted

one seventh of a second.

I invented

how to send emails—and how to send them
across

that new internet

that Philip Emeagwali internet




and how to send them with
five-subject lines.

I invented

how to send an email

that will be received

at a unique sixteen-bit address
that had no @ sign

or dot com suffix.

I invented

how to swap and distribute
my questions and answers
into and from two-to-power sixteen
commodity-off-the-shelf processors.
I invented

how to send them along
two-to-power twenty

email wires.

It's not enough that I know the
Philip Emeagwali internet.
That new internet

must know Philip Emeagwali
as its sole programmer.

To squeeze the maximum




computational speed 588
out of my ensemble of

65,536 processors

demanded that I understand my ensemble

as a global network of processors
that is a new internet
that is the 1i internet.

In Oloibiri oil field

of Bayelsa State

of the southeastern region of Nigeria,

the crude oil that was discovered

back in 1956

was trapped one mile

underneath the surface of the Earth.

Crude oil is a fossil fuel

that formed from the remains of

algae and zooplankton

and from tiny prehistoric plants and animals
that died hundreds of millions of years ago
and that were buried



at the bottom of the sea.

The Oloibiri oil field

that became operational in 1958

was formed hundreds of millions

of years ago.

The Oloibiri oil field

was abandoned in 1978

and abandoned twenty years

after it became operational.

Only about twenty percent

of the crude oil discovered in Oloibiri
was recovered.

One in ten

parallel processing supercomputers
were purchased by the petroleum industry
and were used to solve

extreme-scale problems

arising in algebra

that must be solved as a pre-condition
to discovering and recovering otherwise
elusive

crude oil and natural gas.

Accurately predicting the performance of




crude oil and natural gas reservoirs ﬁﬂ
in the Niger Delta region of Nigeria
translates to more drilling decisions.
With today’s parallel processing
supercomputer technology,

more crude oil and natural gas

would have been

from Oloibiri oil field,

if and only if we had solved

the system of trillions upon trillions

of equations of algebra

that would have arisen

if the parallel processing supercomputer
of today

was available back in 1958

and was used to predict

the subterranean motions

of crude oil, injected water, and natural gas
that flowed a mile deep

inside the production oilfields

of the Niger Delta region

of the southeastern region of Nigeria.
We cannot see, hear, or feel



the subterranean motions of the crude oil
and natural gas

that are flowing one mile deep
underneath our feet.

The supercomputer simulation

of the subterranean motions

of the crude oil and natural gas
that are flowing one mile deep
enables the petroleum geologist

to see—with his digital eyes—

the flow patterns

of the crude oil and natural gas
that are invisible to our naked eyes.
The massively parallel processing
supercomputer

that solves the trillions upon trillions
of equations of algebra

that arises

from the extreme-scale

petroleum reservoir simulator

is the new age divining rod

that must be used

to discover and recover




otherwise elusive
crude oil and natural gas.

Back in 1989,

it made the news headlines

that an African Supercomputer Wizard
had won the US top prize

for inventing

the massively parallel processing
supercomputer

and for inventing

how to breakup extreme-scale
problems arising in algebra

and for inventing

how to break up their computation-intensive
floating-point arithmetical problems
into 65,536

less computation-intensive
arithmetical problems.

[—Philip Emeagwali—is that African
massively parallel processing




supercomputer scientist

who invented

how to solve those smaller problems
and

how to solve those problems in parallel
and

how to solve those problems across
a internet

that I visualized

as a global network of

65,536 tightly-coupled

commodity processors

My invention

of how to parallel process

and how to do so across a new internet
is used to accelerate scientific discovery
in the fields of

computational fluid dynamics,

such as executing
excruciatingly-detailed

petroleum reservoir simulation

and executing them




to discover and recover otherwise elusive
crude oil and natural gas

and such as executing
excruciatingly-detailed

general circulation models

and executing them

to foresee otherwise unforeseeable
climate changes.

The necessity

to execute these extreme-scaled problems
arising in computational physics

is one of the technological grand challenges
that stimulated

the development of the parallel processing
supercomputer.

[726  Changing the Way We Look at the Gomputer

The experimental discovery
of parallel processing
changed the way we look
at the computer,

changed the way we look




at the supercomputer,

and changed the way we solve

the in
extreme-scale algebraic computations.
Parallel processing

is the paradigm shift of tectonic proportions
in the history of computing

that changed the way

crude oil and natural gas

are and

Parallel processing

changed the way

high-resolution, long-running

general circulation models

for otherwise

global warming are foreseen.

Parallel processing

computational physics is done.

The toughest problems

in extreme-scale computational physics
are linked by a common thread, namely,
the modern supercomputer




that parallel processes

their extremely computation-intensive
floating-point arithmetical computations
and execute them across

an ensemble of up to ten million
commodity-off-the-shelf processors.
As a research supercomputer scientist
of the 1970s and ‘80s,

my quest was to

how to harness

my ensemble of 65,536
commodity-off-the-shelf processors
and to also

how to use those processors

to bring the toughest problems

in extreme-scale algebra

to their knees

and to

how to enable the petroleum industry
to use the massively

parallel processing supercomputer

to chase otherwise unrecoverable
crude oil and natural gas.




My discovery

of massively parallel processing

that occurred at

10:15 on the morning Eastern Standard Time
Tuesday the Fourth of July 1989

that was the U.S. Independence Day
made the news headlines

in 1989, and thereafter,

and emboldened the call to action

for computational geophysicists

to embrace

the technology of the

massively parallel processing
supercomputer.

My discovery represents a new way

of looking at the computer.

For my country of birth, Nigeria,

the fastest supercomputer

is a poverty alleviation technology.
Crude oil and natural gas are recovered
after using the massively parallel processing
supercomputer technology

to simulate countless crude oil




and natural gas

recovery scenarios.

In 1989,

I was in the news

for experimentally discovering
how to harness

the massively parallel processing
supercomputer

and for discovering

how to use the new technology
to reduce the

for solving

extreme-scaled system of equations
of algebra

and how to reduce that

from 180 years, or 65,536 days,
to only one day of

I was in the news because
reducing that

increases the odds of
discovering and recovering
otherwise elusive

crude oil and natural gas.




That discovery

of the massively parallel processing
supercomputer

that occurred

on the Fourth of July 1989

was praised as a giant leap forward
in the development of the modern algebra.
That discovery

of parallel processing

is my contribution to algebra.




