30 Father of the Modern Supercomputer

Adapted from https://www.youtube.com/watch?v=n5q;jiS21ISc

https://soundcloud.com/emeagwali/how
-i1-invented-the-modern-supercomputer-
who-is-philip-emeagwali-episode-170120

Adapted from 30:07 minutes
https://www.youtube.com/watch?v=pE2Q8c

7bsow
52:00 minutes

https://www.youtube.com/watch?v=8FjBhS
aXKZg&t=4s

Philip

B eb

mfo@emeagwall com

202 203- 8124

Philip Emeagwali Lecture 170928

Visit http://emeagwali.com for complete @I
transcripts of 100+ lectures.

Video: https://YouTube.com/emeagwali

Podcast: https://SoundCloud.com/emeagwali

36.1 How My Supercomputer
Discovery Came Together

0.1 Who's Philip Emeagwal, the Discoverer of
Paralle] Processimg?

I’m the supercomputer scientist

who was in the news

back in 1989

for experimentally discovering

how and why parallel processing
makes modern computers faster

and makes the new supercomputer
the fastest,

namely, the Philip Emeagwali formu

2000.

The parallel processing supercomputer
impacts today

and imagines tomorrow.

The fastest, parallel processing
supercomputer

can occupy the space of a football field.
But the holy grail in parallel processing
supercomputing

is to compute the fastest

and to do so on the smallest
supercomputer footprint.

Parallel processing supercomputers

are used to execute

general circulation models

that are used to

foresee otherwise unforeseen

global warming.

The faster the parallel processing @ﬂ
supercomputer

the greater the resolution

of the climate model

or the computational fluid dynamics code
that the supercomputer

is executing.

And the more detailed the model,

the lower the production costs,

and the lower the environmental risks.
And the greater the accuracy

of predicting global warming

that informs and enlightens us

on how to protect

our fragile planet Earth.

And the greater the amount of

crude oil and natural gas that can be
extracted.

The reason

modern supercomputers were purchased
by the petroleum industry

was that fastest parallel processing Qﬂ
supercomputing

compresses time-to-solution
and did so by enabling the
supercomputer modeler

to run more simulations

and making it more efficient

to drill more oil wells

and produce more crude oil and natural
gas.

The larger, higher-fidelity
petroleum reservoir simulation
that is executed

on the parallel processing,
high-performance supercomputer
is used to predetermine

the profitability

of newly discovered oil fields

and those of oilfields,
such as the Oloibiri oilfield

of Bayelsa state, Nigeria,

that was in 1978.

The larger, higher-fidelity
petroleum reservoir simulations
that run on parallel processing
supercomputers

that were purchased

by the petroleum industry

are used to figure out

the most profitable places

to drill for crude oil and natural gas.
My contributions to the use

of the high-performance,

parallel processing supercomputer
to recover otherwise unrecoverable
crude oil and natural gas

was the cover stories

of top publications

in mathematics, computing,

and petroleum engineering.

What set me apart

from other supercomputer scientists
was that I was only interested

in naked

parallel processing supercomputers,
or their processors.

Parallel programming ensembles of
up to two-raised-to-power sixteen
processors

and do so for sixteen years

and parallel programming for up to
sixteen hours a day

and parallel programming alone

in the United States

was what elevated me

to the fastest and highest levels,

or what some call

the highest computer wizard.

It’s the reason American students

are writing school reports

on the contributions of

Philip Emeagwali

to the development of the
modern supercomputer

that computes in parallel

by processing many things (or processes)
at once.

In my experiments

that began as a very vague idea
on June 20, 1974

in the Computer Center,

at 1800 SW Campus Way,
Corvallis, Oregon,

that matured as a discovery
that was reported

on my sixteenth anniversary

of supercomputing,

in the June 20, 1990 issue

of The Wall Street Journal.

It was reported by the news media

as a paradigm-shifting discovery @I
that will change the way we think
about how and why parallel processing
makes modern computers faster

and makes the new supercomputer

the fastest.

I told the news media

that my contribution to the development
of the new

massively parallel supercomputer

is this:

I experimentally discovered

that 65,536 days,

or one hundred and eighty [180] years
of time-to-solution on a computer
that is only powered by

only one isolated processor

can be speeded-up to only

one day of time-to-solution

across a new internet

that is a global network of

65,536
processors.

That experimental discovery

opened the door

to a promising line of research

and my original discovery

have been experimentally re-confirmed
as thirty thousand [30,000]
computing-years compressed to

one supercomputing-day.

30..3 Core Knowledge Series

My experimental discovery

of massively parallel processing
is the core knowledge

of what makes computers
faster

and makes supercomputers
fastest, namely,

—_———

August 26, 2000.

To parallel process,

or to compute many things (or processes)
at once

instead of computing

only one thing at a time,

is a fundamental knowledge of

modern computer science.

In the 1980s,

I was the lone wolf

supercomputer programmer

of the most massively parallel processing
supercomputer

ever built.

In the 1980s,

I was at the farthest frontier

of massively parallel processing.

In the 1980s,

I was at the of mathematics,
physics, computing,

and communicating across

a new internet

that is a global network of

64 binary thousand

already-available processors

that were married together

by one binary million

regular, short, and equidistant

email wires

and married together

as one cohesive, seamless
supercomputer.

Parallel processing introduces students
to how the modern computer
computes faster.

The knowledge of parallel processing
enables students

to participate in conversations about

the development of the computer. @
It matters that my contribution

to the development of the fastest
computers

is studied in American schools.

It matters because

eventually, students of today

will be the teachers of tomorrow.
Eventually, teachers of yesterday

will be companions

to the 17" century Isaac Newton.

So, I understood—in the 1970s and ‘80s—
how important it will be

for young black Africans

to see another black African

making a contribution

to the development of the computer.

I discovered that

it was not just for young black Africans
to see me in a leading role

but for old white European scientists

to get accustomed to
a young black African
as their scientific role model.

The second reason I programmed alone
was because I was the only person
—out of twenty-five thousand [25,000]
supercomputer programmers—

that had the confidence

to communicate and compute what the
textbooks then described

as impossible-to-compute.

I was the only person in the world
that understood massively

parallel processing

and understood it

as a small internet

that’s a global network of

processors. @

I was inspired to conduct research alone
in the decade of the 1980s because

I invented

how to harness a global network of
65,536

processors

and optimize that new internet

to yield a speed increase

of a factor of 65,536.

30.15 How My Supercomputer Discovery Came
Together

For me, my invention

of 1989

was the coming together

of mathematical inventions
that began a decade earlier.

Namely, those mathematical inventions @
were encoding the laws of physics
into the partial differential equations
of calculus

and then discretizing those equations
to obtain

a system of equations

of large-scale algebra

and then coding that large-scale
algebraic computations

into large-scale floating-point
arithmetical operations

and then executing those arithmetical
calculations

within a computer

and, finally, executing

those arithmetical calculations across
a small internet

that was my global network of

65,536
commodity-off-the-shelf processors.

The calculus and algebra

is just a way to encode

the laws of physics

to enable computational physicists
to foresee otherwise unforeseeable
global warming,

or hindcast or forecast the motions
of fluids flowing below,

on, or above

the surface of the Earth

or above the surface

of a distant heavenly body.

In Nigeria and in Africa,

algebra is learned in a context-less way.
Even in the United States and in Europe,
only one in a million people

that studied algebra

can explain how algebra

is used to discover and recover
crude oil and natural gas.

For me—Philip Emeagwali

—recovering previously unrecoverable @
crude oil and natural gas—and
recovering them

from abandoned oilfields,

such as the Oloibiri Oilfield

of Bayelsa State, Nigeria—

demands that the laws of physics

be encoded into a system of dense
partial differential equations

of calculus,

but we encoded them into calculus
without the large-scale algebra;

and demands that

large-scale system of equations

of algebra

be encoded into abstract algorithm,
but we encoded them into

abstract algorithm

without the computation-intensive
floating-point arithmetical operations;
and demands that those

arithmetical operations

be encoded into binary codes,

but we encoded them into binary codes
without the sixteen-bit long

email addresses

that I used, as a lone wolf programmer.
I was the lone wolf

supercomputer programmer

who was in the news headlines

as the “African Supercomputer Wizard”
in Los Alamos, New Mexico,

United States.

[forged my technological path

to my new internet

that I visualized

as a new global network of
two-raised-to-power sixteen,

or 64 binary thousand,

processors.

[visualized my new internet

as one cohesive whole unit

that is a new supercomputer
that was outlined by
two-raised-to-power sixteen
already-available

processors

that were married together
by sixteen times
two-raised-to-power sixteen
regular and short email wires
that are equal distances
apart.

The June 20, 1990 issue

of the Wall Street Journal
recorded that I—Philip Emeagwali—
had invented

how 65,536

processors

could compute together

to solve the toughest problems in
calculus.

I experimentally discovered

the total parallel processing
supercomputing power

of those processors,

not as separate processors,

but as one cohesive unit

that is not a computer per se

but that is a new internet de facto.
And so on.

36.2 How I Invented the Modern
Supercomputer

30.2.1 My Breakout Discovery in Supercomputing

My breakout discovery occurred in 1989.
On the morning that discovery occurred,
I was dressed in blue jeans,

plaid shirt, and white tennis shoes.

I had been sitting silently

and sitting for months in a row

and sitting in front of

my workstation computer

that was tucked away

in a :

I faced three blank walls

and I faced an often blank, super-sized
computer monitor.

The blankness made it easier for me
to concentrate

on my equations, algorithms, codes,
and emails.

I was a lone wolf programmer

in Los Alamos, New Mexico,

United States,

of a new global network of

64 binary thousand processors.

I was remotely parallel programming
sixteen separate

global network of processors,

each ensemble comprising of

up to two-raised-to-power sixteen
processors.

I visualized each of my ensemble

as my new internet,

or as my new global network of
processors.

It was like silently sitting alone

in a

and interacting with

65,536 complex machines

that you’ve never seen.

I found it and

inside that dark sixteen-dimensional
world.

My breakout discovery

of the massively parallel processing
supercomputer

that occurred on the Fourth of July 1989
in Los Alamos, New Mexico,

United States

was first announced

as a press release in San Francisco,
California.

That press release

that announced my experimental
discovery of parallel processing
was issued and distributed

by The Computer Society

of IEEE.

The Computer Society

is the world’s largest computer society.
Before 1989,

supercomputer textbook authors
explained that parallel processing
supercomputing

—or solving a million problems
(or processes) at once,

instead of solving one problem

at a time—

is a beautiful theory

that lacked an experimental
confirmation.

Then in 1989,

it made the news headlines

that a lone wolf

African massively parallel processing
supercomputer wizard

in Los Alamos, New Mexico,

United States,

had experimentally confirmed that
the impossible-to-solve

is, in fact, possible-to-solve.

That African supercomputer wizard
experimentally confirmed that

it is possible to solve a million problems
(or processes) at once

and solve them while solving

an extreme-scale problem

in computational physics.

[—Philip Emeagwali—

is that African supercomputer scientist
that was in the news in 1989.

I invented

how to solve the toughest problems
arising in calculus, computing,

and computational physics

and how to solve

such computation-intensive problems
in parallel

and how to solve them across

a new internet.

I visualized my new internet

as a new global network of

64 binary thousand,

or two-raised-to-power sixteen,
commonly-available processors.

Or as a global network of

64 binary thousand computers

that are equal distances apart
in a sixteen-dimensional universe.

Solving the

arising in calculus

is akin to playing a complex game
with complex rules

and playing that game

in a sixteen-dimensional universe.
In 1989, it made the news headlines
that I—Philip Emeagwali—had

how to play that game

in sixteen-dimensional hyperspace.

I invented

how to execute

floating-point arithmetical operations
and how to do so

at the fastest, parallel processing Qﬂﬂ
supercomputer speeds

ever recorded.

I experimentally discovered that speed
across a new internet

that is my new global network of
two-raised-to-power sixteen,

or 65,536,

commodity-off-the-shelf processors
and that I visualized

as my small copy

of the Internet.

I invented

how to reduce

that computation-intensive

grand challenge problem

to an equivalent set of

64 binary thousand

less computation-intensive problems.
I invented

how to make the impossible-to-solve

possible-to-solve.

I

how to do the impossible
by synchronizing the email
communications

that I executed across

my global network of

64 binary thousand
processors.

I had to visualize

my invention-in-progress
before I invent it.

Often, my visualization

is 90 percent correct.

I discover the remaining ten percent
via experimentation,

or trial-and-error.

[visualized my global network
of processors

as my prototype

for my new internet.

[visualized my large-scale
computational fluid dynamics code

as a computation-intensive game

that I had to play

in a sixteen-dimensional hyperspace
and play across

a fifteen-dimensional chess board.

[visualized my large-scale

general circulation model

as a computational physics code

that was comprised of

64 binary thousand atmospheres

that had a one-to-one, nearest-neighbor
correspondence

with my as many processors.

[visualized my processors

as 65,536 fifteen-dimensional squares
on that sixteen-dimensional chessboard.
I visualized

the hyper-spatial arrangements

of my sixteen-dimensional pieces

and I visualized

the configurations of my chessboard

in hyperspace

and I visualized those configurations
as changing after every move.

[visualized solving the toughest problem
in calculus—namely, the largest-scaled
computational physics codes—

as comprising of

64 binary thousand blocks of
atmosphere.

[visualized each block

as containing flowing air and moisture,
or fluids that are in deterministic
motions

in sixteen-dimensional hyperspace-time.
I visualized

how to parallel process in hyperspace.
Parallel processing is the sine qua non
of modern computing.

Parallel processing is the essential

condition

for the modern computer

and the technology

that is absolutely necessary

for the modern supercomputer.
Parallel processing is the crucial,
indispensable, and disruptive technology
for extreme-scale computational
physicists

and mathematicians.

Without parallel processing,

the world’s fastest supercomputer
will take 30,000 years

to compute what it now computes
in only one day.

The of parallel processing
fueled the growth of
computational science.

As the sole and only full-time
programmer

of that ensemble of

two-raised-to-power sixteen processors,
I gave myself the permission

to break every rule

in that sixteen-dimensional hyperspace,
except that my fluids in motion

could not violate the laws of physics
that I encoded

into my system of coupled, non-linear,
time-dependent, and state-of-the-art
partial differential equations

of calculus.

36.2.3 My Eireka Moment

My Eureka Moment
was in inventing
those global network of

65,536 tightly-coupled processors
with each processor

operating its own operating system
and with each processor

having its own dedicated memory

that shared nothing with each other
and in inventing that ensemble

as a new internet

and in those processors

as having a one-to-one correspondence
to the as many vertices of the cube

in the sixteenth dimensional universe

and in that cube
as tightly circumscribed
by a sphere

that i1s also in the sixteenth
dimensional universe

and in a global network of
processors

that define and outline a new internet.
That

was the beginning of my realization
that the computer and the internet
could become like identical twins.
That was visceral.

After my experimental discovery
and after the news headlines

that followed it

I became like the ancient mariner

who travelled around the world

to tell his tales to different people.
Like the ancient mariner,

I’m here to tell you my tales.

I’m here to share lessons

that I learned as a lone wolf

at the farthest frontier of technology.
I’m here to help you

cross new frontiers

and discuss how we can conquer
today’s grand challenges.

36.3 My Contributions to
Computational Mathematics

30.91 A British-Protected Child

I began my journey @
to the unknown world of supercomputers

in Akure,

in the heart of Yoruba Land

in the then British West African colony
of Nigeria.

I began my journey on August 23, 1954,
my birthdate.

In the 1950s,

the flag of Nigeria

was the Union Jack.

In the 1950s,

the Governor-General of Nigeria

was a non-Nigerian, a British,

that was appointed by the Queen of
England.

In the 1950s,

the currency of Nigeria

was the British West African pound.
In the 1950s,

my British West African travel passport
would have described me

as a British-Protected Child.

I began my journey along a small road
in Akure

that was named Okemeso Street

and the sixth person

in a tiny Boy’s Quarter

that was at the intersection

of Okemeso Street

and Oba Adesida Road,

Akure.

I began my journey with a dim lamp
and at a time

the word “computer”

was not in the vocabulary

of any Nigerian newspaper.

I programmed sequential processing
supercomputers

on June 20, 1974 in Corvallis, Oregon.
Back in 1974, I programmed
sequential processing supercomputers
as a hobby, not for a career.

Ten years before I programmed
sequential processing supercomputers,
no university in the United States

had a computer science department.
The field of computer science, itself,
was a late 1940s outgrowth

from the computation-intensiveness
of the numerical solution

of the ordinary differential equation
of modern calculus.

Most ordinary differential equations

encoded
the Second Law of Motion

of physics.

That Second Law of Motion

governs the motions of a missile

or a spacecraft.

Since 1946,

the supercomputer silently consumed
the most large-scale system of equations
of algebra.

A modern example

of the most large-scaled system of
equations

are those that arose from discretizing
partial differential equations.

The reason computing

reasonably accurate solutions

of a partial differential equation

is computation-intensive

is that computing it

required an infinite number of
calculations.

Therefore, it will take forever

to compute the exact answers

for an initial-boundary value problem
for which a system of

partial differential equations

holds in its interior

and its specified initial

and boundary conditions

hold on the exterior.

In formal mathematical lingo,

the exact solution

of the initial-boundary value problem
is defined across infinite points

in space and time.

Solving the companion

and approximating system of

partial difference equations

of algebra

1s computation-intensive because
the partial differential equations
within the system

are coupled, non-linear,
time-dependent, and hyperbolic.
In a literal sense,

an initial-boundary value problem
such as the problem

at the mathematical core

of the general circulation model
that is used to foresee otherwise
unforeseeable

global warming

is a boundary value problem.

It’s inner boundary

is the nearly eight thousand mile
diameter

surface of the Earth.

It’s outer boundary

is the uppermost atmosphere

that encircles our planet Earth.
Constructing the general circulation
model that will be used

to foresee otherwise unforeseeable
global climate change

and executing that model across

a new internet

that is a global network of processors
is far more complicated

than solving a textbook

partial differential equation.

The initial-boundary value problem
that is at the calculus core

of petroleum reservoir simulation

is far more complicated

than the well posed elliptic

partial differential equations

that I learned in the mid-1970s

and learned from mathematicians

in Kidder Hall

at 2000 SW Campus Way

in Corvallis, (Oregon), United States.
Kidder Hall

was only 200 feet away

from two of the world’s fastest
sequential processing supercomputers
that I was then programming.

30.0. Contributions to Computational Mathematics

[am giving this lecture today

because of my experimental discovery
of parallel processing

that made the news headlines

and did so within

the mathematics community

back in 1989.

I invented

how to look beyond the storyboard,

look beyond the blackboard,

look beyond the motherboard,

and look beyond all three boards

to experimentally solve

partial difference equations

of algebra

that arose from discretizing

and approximating

partial differential equations

of calculus

that encoded a law of physics,

such as the Second Law of Motion.

I invented

how to solve such initial-boundary value
problems

and how to solve them across

a new internet that I invented

and constructively reduced to practice
as my new global network of

65,536 tightly-coupled processors
that shared nothing with each other.

In that global network,
my processors were identical
and were equal distances apart.

30.0.4 Foundations for Computational Hathematics

I emigrated from Onitsha (Nigeria)
to Oregon (United States).

I last lived in Africa

when I was nineteen years old.

I first came to the United States

on Sunday March 24, 1974.

I spent my first night

in the United States,

alone, and in Room 36

of Butler Hall,

Monmouth, Oregon.

On my desk in Butler Hall

was a 568-page blue hardbound book
that was titled:

[quote]

“An Introduction

to the Infinitesimal Calculus.”
[unquote]

That calculus book

was written by G.W. [George William] Caunt
and published by Oxford University Press.
I acquired that calculus book
through an act of serendipity.

In June 1970 and five months

after the ended
and in Christ the King College,
Onitsha (Nigeria),

I was given the nickname “Calculus.”
They called me “calculus”

because it seemed like

I carried that calculus book

at all times.

In 1971 and ‘72,

I studied calculus independently

and in the late afternoons

at Sacred Heart Primary School,

Ibuzor, Mid-West State, Nigeria.
In the early 1970s,

I imagined that calculus book

as my magical window

that enabled me to study calculus
by correspondence

and through a text-only version
of a calculus lecture

given by the author Professor G.W. Caunt
and given at the University of Oxford,
England.

As a 15-year-old in June 1970,

I gained a glimpse

of the frontier of calculus.

That awareness

inspired me to begin my quest
for new calculus

that could only be discovered

in the terra incognita of calculus.
I took two decades,

onward of June 1970,

to arrive at the frontiers

of calculus and algebra—namely,
invent Philip Emeagwali’s

partial differential equations

that are defined

in the interior of the domain

of an initial-boundary value problem
and discretize those equations

into millions upon millions

of approximating

partial difference equations

of algebra

and, finally, to experimentally discover
how to solve such computation-intensive
algebraic problems

and solve them

at the fastest, parallel processing
supercomputer speeds.

Such boundary value problems

are at the mathematical core

of general circulation models,

at the mathematical core

of petroleum reservoir simulators,

and at the mathematical core

of large-scale

computational fluid dynamics.

Such boundary value problems

gave rise to the algebraic approximations
of the partial differential equations

that I translated for the processor.

As a research computational mathematician,
I discovered that

the new frontier of calculus

is across a new internet

that is a global network of

64 binary thousand processors.

36.4 My Contributions to Calculus

30.41 Paralle] Compating the Toughest Problems

For the twenty years, onward of June 1970, @
I studied calculus,

beginning with the book by G.W. Caunt,

and did so almost daily

and ending the new calculus

that comprised of 36 partial derivative terms
that I invented

in the early 1980s.

In the early 1970s and in Onitsha, Nigeria,
I studied calculus on the storyboard

in which the laws of physics

were the stories

and studied calculus

as the most powerful instrument of physics.
In the mid-1970s

and in Kidder Hall, Corvallis, Oregon,
United States,

I continued to study calculus

and studied it as differential equations

on blackboards that were

200 feet away from

two of the fastest supercomputers

in the world.

In the late 1970s

and in the Foggy Bottom neighborhood
of Washington, DC,

I continued to study calculus

and studied it as advanced expressions
called partial differential equations
that encoded the laws of physics

and I studied the calculus

that was in the granite core of
extreme-scale computational fluid dynamics.
Throughout the 1980s,

I continued my quest for new calculus
at the frontier of calculus

and I

how to solve the

in calculus

and how to solve them across

64 binary thousand

identical processors.

As a large-scale
computational mathematician
of the 1980s,

my contributions to calculus
were two-fold.

My to calculus
that made the news headlines
in 1989

was my

of how to solve a million problems
(or processes) at once

and how to solve them

as solving initial-boundary value problems
of calculus

and solving them across

64 binary thousand processors
that are equal distances apart

and that are identical.

The reason my

made the news headlines in 1989
was that it opened the door

to the modern, parallel processing
supercomputer
that computes across

ten million
six hundred and forty-nine thousand
six hundred [10,649,600]

identical processors.

My second contribution to calculus

that also made the news headlines

in 1989

was my invention

of how to solve the

initial-boundary value problems

of calculus and of crude oil and natural gas
recovery

and how to solve them better and faster.
I invented 36 partial derivative terms.
My derivative terms

expanded the existing

45 partial derivative terms.

My total of 81

partial derivative terms

are the key components

of nine partial differential equations
that are also known as the

Philip Emeagwali’s equations.

That system of nine

coupled, non-linear, time-dependent, and
state-of-the-art Philip Emeagwali’s
equations

governs the three phase flows

of crude oil, injected water, and natural gas
in the x-, y-, and z-directions.

Those 81 derivative terms of calculus
define more accurate,

larger, higher-fidelity

petroleum reservoir simulation models.
Using 81, instead of 45,

partial derivative terms

enables the petroleum geologist

do her calculus better and faster.

My 36 partial derivative terms

were written in the lingua franca
that is unfamiliar

to those lacking expertise

in calculus.

My 36 partial derivative terms
encoded familiar inertial forces.
I made the familiar

unfamiliar.

Those 36 partial derivative terms
were for simulating the flows

of crude oil, injected water, and natural gas
across oilfields.

My mathematical terms

encoded the temporal

and the convective inertial forces
that drive the three-dimensional
motions of crude oil, injected water,
and natural gas

and drive them across an oilfield
and drive them

from water injection wells

to production wells.

As an extreme-scale computational physicist
of the 1980s, calculus

was always at the core

of my computer codes.

As the massively parallel

supercomputer scientist

that was at the farthest frontier

of the fastest computing

of the 1980s, calculus

was always at the core

of my 64 binary thousand computer codes.
I emailed those computer codes

with one-to-one correspondence

to 64 binary thousand

identical processors.

Those plentiful, powerful, and inexpensive
already-available processors were

by a new global network of
one binary million regular and short

email wires that were equal distances @
apart.

Calculus began 330 years ago

and many research mathematicians
contributed to the development of calculus.
My contributions to calculus

were

of top mathematics publications,

such as the cover story

of the May 1990 issue

of the SIAM News.

My two contributions to calculus

are these:

First, I expanded the calculus

of crude oil and natural gas recovery
by

that enhanced the accuracy

of a system of nine coupled, non-linear,
time-dependent, and state-of-the-art

partial differential equations
that I invented

for high-fidelity

petroleum reservoir simulations
within a multi-disciplinary environment.
Second, I invented

how to solve the system of

millions upon millions of approximating
partial difference equations

of algebra

that arose from my system of

partial differential equations

of calculus

and how to solve them across

an ensemble of 64 binary thousand
processors

new internet

The terminology

“partial differential equation” @
[par-tial dif-fer-en-tial e-qua-tion]

was coined in 1845 to describe an equation
that contained partial derivatives.
Seventeen decades later,

the partial differential equation

is widely used by physicists, chemists,
biologists, economists, and engineers.

In physics, the partial differential equation
is used to model the motions of fluids

that enshroud the Earth,

such as atmospheric circulation models
above the surface of the Earth,

ocean circulation models

on the surface of the Earth,

and petroleum reservoir models

below the surface of the Earth.

The Earth doesn’t fit into a lab,

or into one computer.

For that reason,

how to fit

the Earth into a new supercomputer @
that is not a computer per se

but that is a new internet de facto.

My new internet

is powered by an ensemble of

65,536 commonly-available processors
with each processor

operating its own operating system
and with each processor

having its own dedicated memory

that shared nothing with each other.

30.42 Changing the Way We (alcalate in Galculus

The calculus I learned

in June 1970 and at age 15

differs greatly from the calculus
that I invented twenty years later.
After a decade of research

at the frontiers and crossroad

of calculus and computing,

I invented how to use

parallel processing supercomputers
to solve the toughest
problems in calculus.

To invent a new supercomputer
that solves the toughest problems
in calculus

is to make the impossible-to-solve
possible-to-solve.

My mathematical discovery
was newsworthy

and made me the cover story
of top mathematics publications.
I was the cover story

of the June 1990 issue

of the SIAM News

that is the flagship publication
of the Society for Industrial
and Applied Mathematics.

The reason my invention

was cover stories

¢

of mathematics publications
was that I invented

how to harness

parallel processing technology
to solve the toughest problems
in calculus.

In the old way,

we unsuccessfully tried to solve
the toughest problems

in calculus

on the blackboard or motherboard
and failed to solve them

On One processor.

In the new way,

we can solve

the toughest problems

in calculus

and solve them across

up to ten million

six hundred and forty-nine thousand
six hundred [10,649,600]

identical processors.

During those twenty years

—onward of June 1970—

my mathematical and scientific maturity
grew as expected

of a mathematical scientist

that devoted twenty years

to his craft

and searching for new calculus

at the frontier of abstract calculus
and searching for new algebra

at the frontier of large-scale algebra
and searching for the fastest
floating-point arithmetical operations
at the frontier

of the most massively parallel
supercomputer

ever built

and that is a global network of

64 binary thousand processors

and that is a new internet.

In the seventh year

of that twenty-year sojourn

to the of computing,
I drifted and became an astronomer
who was primarily interested

in distant galaxies in outer spaces.
But in later years,

I drifted from outer space

in the third dimension

that contained black holes
to inner mathematical spaces

in the sixteenth dimension

where finding the supercomputer

is

The research mathematicians

that preceded me were attempting to use
their ten years of training

to solve the in calculus
that I solved after twenty years

of training.

I trained for twenty years

in the mathematical

and computational sciences

before I became cover stories

for mathematicians.

The first programmable supercomputer
was produced in 1946

at Aberdeen Proving Ground,
Aberdeen, Maryland, United States.

The toughest problem

for that first supercomputer

was to numerical solve

the ordinary differential equations
of calculus

that was used at Aberdeen Proving Ground
of Maryland

and used to compute the trajectories
of missiles.

In the mid-1970s and at Kidder Hall,
Corvallis, Oregon, United States,

I was simultaneously studying

how to solve an

ordinary differential equation

on the blackboard

and sequentially programming

two of the fastest supercomputers
in the world.

Those two supercomputers

were 200 feet away

from Kidder Hall.

I used the Teletypewriter Model 33 ASR
that was inside Kidder Hall

to log into each supercomputer.

In Kidder Hall, I discovered that

the numerical solution

of the ordinary differential equation

of calculus

is not as computation-intensive

as the numerical solution

of the partial differential equation

of calculus.

Before my arrival on Sunday March 24, 1974
in Monmouth, Oregon, United States

and back in the late 1940s, ‘50s, and ‘60s
the ordinary differential equation

of calculus

was solved within the supercomputer
that helped send men to the moon.

36.5 How | Became a Polymath

Sixteen months @
after the last man returned from the moon,
I programmed supercomputers

in Corvallis, Oregon, United States.

I programmed supercomputers

on June 20, 1974 and at age nineteen.
Three weeks

after I programmed supercomputers

I was on the cover

of a local newspaper

that circulated in the cities of

Monmouth

and Independence, Oregon, United States.
And I programmed supercomputers

at a time

mathematical physics

was being replaced

by far more powerful computational physics,
such as general circulation models

that are used to foresee

otherwise unforeseeable global warming.

Computational physics

is where physics entered into engineering
to become useful.

I programmed supercomputers

when extreme-scale computational physics
was paradigm shifting

from sequential processing supercomputers
that operated only on pairs of numbers
and paradigm shifted

to vector processing supercomputers

that operated on pairs of lists

of numbers.

I programmed

sequential processing supercomputers
in 1974

and I programmed them

because in 1974

parallel processing was ridiculed

as a beautiful theory

that lacked experimental confirmation.
In the 1980s,

there were twenty-five thousand
supercomputer scientists

that were programming

vector processing supercomputers.
But I—Philip Emeagwali—was the lone wolf
that programmed

the most massively parallel
processing supercomputer

ever built.

My breakout work

was the discovery of how to harness
the slowest 65,536

processors

that each performed

47,303 calculations per second

and performed at that slow speed

to attain the world’s fastest speed
in computation

of 3.1 billion calculations per second
that made the news headlines

in 1989.

Eleven years later, @
and in a White House speech televised

on August 26, 2000,

my invention

of how to push the speed limits

of the supercomputer

was, again, extolled

by then President Bill Clinton.

That massively parallel processing
supercomputer

that I experimentally discovered

as a new global network

is the pre-cursor

to the modern supercomputer.

As an inventor, my contribution

to the development

of the fastest supercomputers

was to invent something from nothing.
I invented the modern supercomputer
from yesterday’s computer.

I invented a new internet

that is a global network of

64 binary thousand computers.

I invented that new internet

from singular computers.

I experimentally discovered

that parallel processing,

or solving 64 binary thousand problems
at once

instead of solving one problem

at a time,

is not a huge waste of everybody’s time.
The inventor experimentally discovered
that the impossible is, in fact, possible.

3001 CGalcnlating in Parallel

The reason parallel processing

was dismissed

as a huge waste of everybody’s time
was that the supercomputer

that did many things (or processes) @
at once

was counter-intuitive.

The computer

was invented by humans

and in the image of humans.

The mathematician

visualized only one human computer
solving his initial-boundary value problems—
such as the general circulation models
that are used

to foresee otherwise unforeseeable
global warming.

The mathematician

visualized only one human computer
solving her

initial-boundary value problems
and solving them alone,

or in sequence

and not solving them in parallel.

The polymath

thinks beyond the laws of physics
on his storyboard,

thinks beyond the calculus,

on his blackboard,

thinks beyond the algebra

on his motherboard,

and thinks beyond the computer codes
that he must email

across his 64 binary thousand
motherboards.

The polymath

thinks around a globe

in the sixteenth dimension.

The polymath

visualizes his internet

as encircling a globe that is a small copy
of the Earth.

The polymath

visualizes his internet

as a global network of
two-raised-to-power sixteen,

or 65,536,

identical processors.

The polymath

visualizes his internet that encircles

a room-sized globe

as a small copy of the internet

that encircles

the planetary-sized Earth.

In the 1970s, I visualized

those 64 binary thousand processors

as the 64 binary thousand electronic brains
of my HyperBall supercomputer.

And I visualized those electronic brains

as equidistantly distributed

around the fifteen-dimensional surface
of a globe, or a hyperball,

and distributed

in a sixteen-dimensional universe.

As a trained geometer,

it was easy for me to visualize this internet.
I visualized the uniformity and regularity

that was needed to understand

how to parallel program

my 64 binary thousand processors.

I visualized

how to parallel program those
plentiful, powerful, and inexpensive
already-available processors

via self-relative email communications
and parallel program them

to and from sixteen

mutually orthogonal directions.

But harnessing the power

of two-raised-to-power sixteen processors
was not easily imagined

by every day engineers

who were trained

to think in only three dimensions.

My invention of parallel processing
was , 1n part,

65,536 things

at once,

instead of doing only one thing

at a time.

I invented

how to solve the toughest problems

in computational mathematics

and computational physics

—problems such as

using larger, higher-fidelity
petroleum reservoir simulator

to discover and recover

otherwise elusive

crude oil and natural gas—and | invented
how to make the impossible-to-compute
possible-to-compute

and [invented

how to compute them sixteen dimensionally
and along sixteen

mutually orthogonal directions.

I invented

how to solve

the initial-boundary value problems
of calculus

and solve them across

64 binary thousand

processors.

The initial-boundary value problems
that I experimentally solved
encoded a set of laws of physics
and encoded them

into a system of

partial differential equations

of calculus.

Each partial differential equation
governed a physical phenomenon.
A physical phenomenon

might be the large-scale motion

of air and moisture

within the atmosphere of the Earth.
In atmospheric modeling,

such as weather forecasting

or general circulation modeling,
the interior of my
initial-boundary value problem
will correspond to the Earth’s atmosphere.
In the late 1940s, ‘50s, and ‘60s,
initial-boundary value problems

of calculus

were approximated and reduced to
large-scale systems of

partial difference equations

of algebra.

Those systems of equations

arose from

the finite difference

and/or the finite element discretizations
of the governing

partial differential equations

of the initial-boundary value problem.
Those systems of equations

were solved on supercomputers

that were powered by

only one isolated sequential processing unit @ﬂ
that was not a member

of an ensemble of processors

that communicates and computes

together

and as one seamless, cohesive

supercomputer.

In the 1970s and ‘80s,
initial-boundary value problems

were solved on supercomputers

that were powered by

only one isolated vector processing unit
that was not a member

of an ensemble of processors.

There’s no school of genius students
learning from genius teachers.
Our genius resides within us.

As a lone wolf supercomputer scientist,
I had to be a polymath

to be able solve the toughest problem
of supercomputing

and solve the problem alone.

I had to be a polymath

to understand

the set of laws of physics

and understand those laws

as my lowest common denominator.
I had to be a polymath

to translate the toughest problem

in computational physics

and translate it alone

and translate it

from the frontier of knowledge

of extreme-scale computational physics
to the frontier of knowledge

of the partial differential equations
of calculus,

to the frontier of knowledge

of extreme-scale algebra,

and to the frontier of knowledge
of massively parallel supercomputing.
I had to be a polymath

to translate

a grand challenge problem alone
and translate it

across uncharted territories

of technological knowledge

where I recorded unrecorded speeds
in computation.

That uncharted territory

comprised of

a global network of

the slowest 65,536

processors

that were equal distances

apart

that computed together

to emulate the fastest supercomputer.
I had to be a polymath

to translate the grand challenge problem @
alone

and translate it

from physics to algebra to calculus
and translate it

back to algebra and to arithmetic
and translate it

into a processor

and translate it

through a new internet.

I had to be a polymath

to invent that new internet alone
and invent it

as a global network of

64 binary thousand

processors.

I had to be a polymath

to deeply understand

and to clearly visualize

in the sixteenth dimension

how my seamless emailing

of two-raised-to-power sixteen,

or 64 binary thousand, emails

will save me from

the 64 binary thousand square corners,
with a one-to-one correspondence

with my as many processors.

I had to be a polymath

to deeply understand

how the sixteen times

the two-raised-to-power sixteen,

or the one binary million,

unique arrangement of zeros and ones
will save me from

the one million forty-eight thousand
five hundred and seventy-six [1,048,576]
bi-directional sharp edges

with a one-to-one correspondence

with my as many email wires.

A fifth grader doing a school report
on Philip Emeagwali asked:

“Are you a black genius?”

[answered:

“Is Albert Einstein a Jewish genius?”
Genius is not a white trait.

Nor is it a black trait.

Genius is a human trait!

The genius

is the ordinary person

that found the extraordinary
in the ordinary.

30.03 How I Became a Polymath

Back in the 1980s,

they were 25,000 supercomputer
programmers

in the United States alone.

Each supercomputer scientist programmed
a vector processing supercomputer.
[—Philip Emeagwali—was the lone wolf

supercomputer scientist

that was at the

of the most massively parallel
supercomputer.

That parallel processing machine
was the

of the modern supercomputer

of today

that computes in parallel

and communicates across millions
of processors.

To some extent,

that parallel processing machine
was the

of the modern computer

of today

that computes in parallel

and communicates synchronously
and do both across hundreds of
processors.

I didn’t become a polymath

with the help of an instructional DVD.
I didn’t arrive overnight

at the farthest frontiers

of human knowledge.

And I didn’t become a polymath

that arrived at the

of supercomputing

and arrived there

by enrolling in a six-day coding school.
I became a polymath

after two decades of training

that was onwards of June 1970,

and the date I began studying calculus.
[began programming supercomputers
at 1800 SW Campus Way,

Corvallis, Oregon, United States

on June 20, 1974

at age nineteen.

I became a polymath

that is a supercomputer scientist

after a decade and half

of parallel programming the fastest
supercomputers.

In the 1980s,

I was the lone wolf programmer
of the most massively

parallel supercomputer

ever built.

I became a polymath

and a computer wizard

after and because

I had programmed

more processors

than any person

that ever lived.

3004 The Lone Wolf at the Farthest Frontier

I programmed a supercomputer
nearly every day

&m

and programmed sixteen supercomputers @
in sixteen years

before I became a supercomputer scientist.
You need discipline

more than you need talent

to become a supercomputer wizard.

In my fifth decade of supercomputing,

that is onward of June 20, 1974,

[accumulated a body of inventions

to draw from.

I had to re-examine my body of discoveries.
After five decades,

the context of my discovery

is different.

And I am also different.

I am selecting from facts

and truths

that I hope will remain timeless

and evergreen.

Unlike four and half decades ago,

I now possess a

that sees into the sixteenth dimension.
In hindsight, I realized that the
toughest problem

in massively parallel processing

that I solved chose me

rather than me chose the problem.

I have more materials

to contextualize my supercomputer
experiments

of the preceding four and half decades.
In the 1970s and ‘80s,

I was and

for challenging the

of the supercomputer world

that demanded

only one isolated processor

that was not a member

of an ensemble of processors.

Those research supercomputer scientists
that were

and that were merely seeking a factor of

two percent increase

in supercomputing speed

were handsomely rewarded

while I was

for seeking a factor of

65,536 fold increase

in supercomputer speed.

I was

when I advocated

massively parallel processing.

In November 1982,

I gave a lecture

on massively parallel processing.

I gave the lecture in a conference auditorium
that was a short walk

from

in Washington, DC.

I gave my lecture

on how to massively parallel process
65,536 initial-boundary value problems
and on how to process them at once,

or how to solve the toughest problems
in calculus

and solve them

across as many plentiful, powerful,
and inexpensive commodity
off-the-shelf processors,

instead of solving them in sequence
and solving them within only one
isolated processor

that was not a member

of an ensemble of processors

that communicates and computes
together
and as one seamless, cohesive

supercomputer.

Because parallel processing

was then—in the 1970s and ‘8os—regarded
as a ,

only one young

computational mathematician

attended my November 1982 lecture

on how to massively parallel process @
the toughest problems in mathematics.
In the 1970s,

the Computer World

was the flagship publication

of the computer industry.

And the National Computer Conference
was the largest computer conference
in the world.

The June 14, 1976 issue

of the Computer World

interviewed

the foremost supercomputer experts
that attended the 1976

National Computer Conference.
Based on that interview

the Computer World

wrote a state-of-the-art article titled:
[quote]

“Research in Parallel Processing
Questioned as ‘Waste of Time.’”

[unquote]

In the 1980s, only one person

was at the

of massively parallel supercomputing.
I was the only fulltime programmer
of the most massively parallel
supercomputer

of the 1980s.

In the 1970s and ‘80s,

the leaders of thought

in vector processing supercomputing
ridiculed parallel processing

and dismissed it

as

That pessimism

towards parallel processing

was the reason

[—Philip Emeagwali—was the only
fulltime programmer

of the most massively parallel processing

supercomputer

of the 1980s and earlier.

I was alone at the farthest frontier
of the most massively parallel
supercomputer

ever built.

That fastest supercomputer

of the 1980s

is the pre-cursor

to the modern supercomputer
that is the fastest computer

of today.

My 1989 experimental discovery
of parallel processing

was not just about supercomputing
64 binary thousand times faster.
That discovery

made the news headlines because
it was about making possible
65,536 solutions

that were otherwise impossible.

In 1989, to invent a supercomputer

was to make the -to-compute
that was

with vector processing

supercomputer technology
possible-to-compute

with parallel processing

supercomputer technology.

In the future, to invent a supercomputer
will be to make the -to-compute
that is

with parallel processing

supercomputer technology
possible-to-compute

with an technology.

