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The need to calculate
is as old as humanity.




The need to compute

existed because it is central to
human existence.

The Latin equivalence

of the word “computer”

was first used in print

two thousand years ago.

The word “computer”

was first used by the Roman author
Pliny the Elder.

The word “supercomputer”

was coined in 1967.

I believe that our children’s children
will coin a new word

for their supercomputers.

I believe that our children’s children
will




16.1 Contributions of Philip
Emeagwali to Algebra

The discovery and recovery

of every single barrel of oil

from any oilfield

in the Niger-Delta region of Nigeria

must be preceded

by the massively parallel processed solution
of the toughest problem

in extreme-scale algebra.

For the fifteen years, inclusive

of from the 20 of June of 1974

that I was in Corvallis, Oregon, United States
through the Fourth of July 1989

in Los Alamos, New Mexico, United States,

I conducted my supercomputer research,
and did so from speeds of

one million instructions per second

in Oregon

to billions upon billions

of floating-point arithmetical calculations




that I executed across

a new internet

that is outlined and defined

by a new global network of
two-raised-to-power sixteen
tightly-coupled processors

that are commonly available

in the market.

Each of those 64 binary thousand
commodity processors

operated its own operating system.
Each of those 65,536 processors
has its own dedicated memory
that shares nothing with each other.
I was in the news in 1989

because I invented

how to solve the most
computation-intensive problems
arising in large-scale

algebraic computations.

Such problems arose from discretizing
partial differential equations

that, in turn, arose from




physics-based supercomputer simulations @
of the motions of fluids

that flow below the surface of the Earth,
such as the mile-deep

crude oil, injected water, and natural gas
in the Niger-Delta region of Nigeria;
and from supercomputer simulations

of the motions of fluids

that flow on the surface of the Earth,
such as the River Niger, Lake Chad,

and the Atlantic ocean;

and from supercomputer simulations

of the motions of fluids

that flow above the surface of the Earth,
such as atmospheric rivers

that are defined

as bands of moisture in the sky

that can discharge as much water

as many land rivers.

Following my

of the massively parallel processing
supercomputer

that occurred



on the Fourth of July 1989,

and that occurred in Los Alamos, New
Mexico, United States,

the top publications

in petroleum engineering and mathematics
credited I—Philip Emeagwali—

with the invention

of how to solve the toughest problems
arising in extreme-scale algebra

that must be solved

as a pre-condition for

and

otherwise elusive

crude oil and natural gas.

For fifteen years,

my supercomputer research on how to solve
the toughest problems

arising in large-scale algebraic computations
and how to solve them across

a

that is a of 65,536
commonly-available processors

that were identical




and that were equal distances apart
was criticized, scorned, and rejected.
My

of how to solve the most extreme-scale
problems arising in algebra

and how to solve them across

my

thatis a global network of
65,536 commodity processors

was only accepted

after the Fourth of July 1989,

the date that I it.

To the non-mathematician,

my is abstract
and impenetrable.

But my

to calculus and algebra
made sense to the research mathematician.
For that reason, my contributions
to using the modern supercomputer
to solve the toughest problems
arising in calculus and algebra

was the




of top mathematics publications,
such as the May 1990 issue
of the SIAM News.
The SIAM News
is the flagship publication
of the mathematics community.
The SIAM News
is published by the Society for
Industrial and Applied Mathematics.
I was not on the cover
of top mathematics publications
because I was
I was on the cover
of top mathematics publications
because I contributed

knowledge
to the existing body of knowledge
written in algebra textbooks,
namely, I
how to solve the toughest problems
arising in algebra and calculus
and how to solve them across
my




that is a global network of processors Qﬂ
that emulates one seamless, cohesive

My first introduction to algebra

was in mid-1964

in the fifth grade

in Agbor, in the Midwestern Region

of Nigeria.

My first algebra textbook

was written by an English schoolmaster
named Clement Vavasor “CV” Durell.
Who invented the quadratic equation

of algebra?

The quadratic equation

is one of the most important contributions
to mathematics

that was made by Africans

and made in Africa.

The quadratic equation

was first solved



in the Berlin Papyrus.

The Berlin Papyrus

was excavated in Africa

but renamed after Berlin, Germany.

In the history of mathematics,

it was the tradition

credit the mathematical knowledge

that was developed in Africa

to Europe.

Following that tradition

of historians of mathematics,

the Berlin Papyrus

was credited to the city of Berlin, Germany
and not named after

the city in Africa

that the Papyrus was excavated from.

The [quote unquote] “Berlin Papyrus”
was written in Africa

and written by Africans

and written between

three thousand seven hundred and twenty
[3,720] years ago

and four thousand one hundred and eighty




[4,180] years ago. 4%.
In that African Papyrus

that was written four thousand years ago,
the quadratic equation
was stated as

X squared plus Y squared
equals 100

and V equals three-quarters

divided by the product of four and X.

The quadratic equation of algebra

that is in the homework assignment

of a 12-year-old

contains at least one unknown variable
that is squared.

That unknown variable

is often called X.
The 24 million system of



partial difference equations

of algebra

that I solved

on the Fourth of July 1989

and solved across a new internet
that is a new global network of
65,536 tightly-coupled,
commonly available processors
that made the news headlines
contained 24 million unknown variables.
That was a world record in algebra.

In my Fourth of July 1989

invention,

I computed across a new internet.

I visualized my new internet

as my new global network of

65,536 tightly-coupled processors

with each processor

operating its own operating system
and with each processor

having its own dedicated memory

that shared nothing with each other.
Each processor within my new internet




had one hundred and thirty-one thousand 4@
and seventy-two [131,072] bytes of memory
that I used

for the integer and logical operations

that arose

from my algebraic computations.

I also used

two thousand and forty-eight [2,048]
floating point co-processors.

I used those co-processors

to execute

my floating point arithmetical computations.
Each co-processor

had four megabytes of memory.

The frontier of extreme-scale algebra

is far beyond the quadratic equation

that contains two unknown variables

that was first solved

four thousand years ago

in Africa.

Extreme-scale algebra

arise during the general circulation modeling
that must be used to foresee



otherwise unforeseeable

global warmings.

Extreme-scale algebra

is used to discover and recover
otherwise elusive

crude oil and natural gas.
Extreme-scale algebra

is used to solve the toughest problems
arising in computational physics.
The most important quest

in algebra

was to theoretically

and experimentally invent

how to solve extreme-scale
tri-diagonal system of equations
of algebra

and how to solve those equations across
millions upon millions

of tightly-coupled processors

with each processor

operating its own operating system
and with each processor

having its own dedicated memory



that shared nothing with each other.
One reason I was the cover stories
of mathematics publications

was because

I mathematically discovered

that it’s impossible

to reduce a tri-diagonal system of equations
of algebra

and reduce it

to a mathematically equivalent
diagonal system of equations

of algebra.

I, de facto, circumvented that

by taking two steps backward

and to the granite core

of the physical problem

that is mathematically modeled,
namely, the extreme-scale
petroleum reservoir simulation,
that was governed by

a tri-diagonal system of equations
of algebra

that arose from discretizing

468




a system of partial differential equations Qﬂ
of modern calculus

and arose from approximating

that system

by a companion system

of partial difference equations

of a new algebra.

It was at that granite core

of the most

petroleum reservoir simulation

that I reformulated

the partial differential equations

that is a new calculus

that was not in any calculus textbook

that was printed in the 1970s or earlier.
The reason my contributions to mathematics
was the cover story

of the top mathematics publication, namely,
the May 1990 issue

of the SIAM News

of the Society of Industrial

and Applied Mathematics

was that I created a new calculus



and I did so

by inventing thirty-six [36] additional
partial derivative terms

of calculus.

In the old calculus

that 1s used to recover

otherwise

crude oil and natural gas,

only forty-five [45]

partial derivative terms

represented the Second Law of Motion
of physics

that was encoded

into the three-phased—crude oil,
injected water, and natural gas—
extreme-scaled

petroleum reservoir simulator.

My

to the body of mathematical knowledge
called calculus and algebra are these:
I added the thirty-six [36]

partial derivative terms

of modern calculus




that I invented

to the forty-five [45]

partial derivative terms

that prior research mathematicians
invented.

And I did so to bring the total

partial derivative terms

to eighty-one (81).

In the advanced calculus textbooks

and in the old paradigm

of extreme-scale algebraic computations
arising from

petroleum reservoir simulations,

the governing system of coupled, non-linear,
time-dependent, and state-of-the-art
partial differential equations

of modern mathematics

was parabolic, instead of hyperbolic.

In my new paradigm

of extreme-scale algebraic computations,
that enabled me to

massively parallel process

and to process across a new internet




that I visualized

as a new global network of
65,536 tightly-coupled,
commonly available processors

and in that new paradigm

my system of coupled, non-linear,
time-dependent, and state-of-the-art
partial differential equations

of modern calculus is hyperbolic,

not parabolic as written in

calculus textbooks.

My contributions to calculus

was a paradigm shift because

such governing

partial differential equations

are described in all the textbooks

as parabolic, instead of hyperbolic.
They are described in calculus textbooks
on the multi-phase and multi-physics
porous media flow

of crude oil, injected water, and natural gas,
such as the crude oil and natural gas




flowing from the water injection wells
to the crude oil and natural gas wells
across the oilfields

of the Niger Delta region

of southeastern Nigeria.

Back in the early 1980s,

I was in College Park, Maryland.

I was a research computational
mathematician in College Park.
The to mathematics
that I made in the early 1980s
were the

of the top mathematics publications,
such as the May 1990 issue

of the SIAM News

that was published by

the Society of Industrial

and Applied Mathematics.

My quest

for new mathematical knowledge




was in the fields of calculus and
numerical analysis.

My greatest focus

was in the field of extreme-scaled
computational mathematics.

I focused on never-before-seen ways
of using the most abstract

and the most advanced
arithmetical knowledge

and using that knowledge

to solve the

that arise in computational physics
that otherwise will be unsolveable.
My new field

—of never-before-seen
extreme-scaled computations—
was at the crossroad

between calculus and algebra

and between arithmetic

and the computer.

I redefined my numerical analysis
as between

the singular processor




that computes sequentially

and my ensemble of processors

that computes in parallel,

or that solves many problems

at once.

In 1989, it made the news headlines
that an African supercomputer wizard
in the United States

had invented

how to use 65,536 processors

to solve as many problems in parallel.
I am that African supercomputer scientist
that was in the news

onward of 1989.

I was in the news because I invented
how to use one billion processors

to solve one billion

initial-boundary value problems

of calculus

and how to solve them in parallel

and, specifically, how to compute across
a new internet

that is a new global network of




two-raised-to-power sixteen
commodity-off-the-shelf processors
that were married together

as one seamless, cohesive
massively parallel processing supercomputer
and married together

by sixteen times as many

email wires.

The mathematical analysis

that was at the theoretical foundation
of my extreme-scale

computational mathematics

and that preceded

my invention

of the massively parallel processing
supercomputer

is called

the

of finite difference discretizations
of partial differential equations

of modern calculus.

was the extremely rigorous




and the analytical procedure @
that I used to derive a priori error estimate
of the rate of propagation

of initial errors

and the rate as I computed forward in time
and computed within each processor

and communicated across

my new ensemble of 65,536
tightly-coupled, commodity processors
with each processor

operating its own operating system

and with each processor

having its own dedicated memory

that shared nothing with each other.

After going through some dense

and abstract stability analyses

in the early 1980s

and after conducting companion
computational experiments,

I mathematically discovered

that explicit finite difference

algebraic approximations

of the governing system of



partial differential equations

of modern calculus

that include the thirty-six (36)

new partial derivative terms

that I invented

allow longer computational time-steps
which, in turn, makes my calculations
faster.

That mathematical invention

was how I greatly

the vexing time-step limit

that textbooks on computational physics
describe as the Courant Condition.
That Courant Condition

is the necessary condition

for the

of the numerical solution

of an explicit

partial difference equation

to the analytical solution

of the original partial differential equation
that it was approximating.

That mathematical invention




was how I bypassed

the empirical Darcy’s formula

that was outdated and invented

back in 1856.

That mathematical invention

was how I replaced

a system of nine algebraic Darcy’s equations
that must be used by the petroleum industry
to describe

the subterranean motions

of multi-phased fluids.

[ invented and replaced

those nine algebraic Darcy’s equations
with my more rigorous

system of nine partial differential equations
of a new calculus

that I invented

from first principles,

or from the Second Law of Motion

of physics.

Henry Darcy’s Law

is a statement in the fluid dynamics

of flows across a porous medium.




Henry Darcy’s Law 480
states that the velocities of crude oil,
injected water,

and natural gas flowing across

the permeable Niger Delta oilfields

of southeastern Nigeria

is due to the difference in pressure.
Henry Darcy’s Law

states that the velocities

of the crude oil, injected water,

and natural gas

are proportional to the pressure gradients
in the direction

of the flows of crude oil, injected water, and
natural gas.

That mathematical invention,

called Philip Emeagwali’s Equations,

was how I bypassed

the vexing

eight processor limit

known as Amdahl’s Law

that limits the number of processors

that should be incorporated



into massively parallel processing
supercomputers.

The first automatic

and sequential processing supercomputer
that was programmable

was invented in 1946.

That first supercomputer

was invented

to be programmed to solve

a large system of equations

of algebra

that arose from the

finite difference discretizations

of ordinary differential equations

of modern calculus

that, in turn, encoded

a set of laws of physics.

What made the sequential processing
supercomputer of 1946 unique

was that it computed automatically



and was, therefore, programmable. @
Fast forward twenty-eight [28] years
from that first supercomputer,

and to June 20, 1974,

in Corvallis, Oregon,

and I was programming

the first supercomputer

that could execute

over one million instructions per second.
I used that first supercomputer

to solve the largest-scale problems
arising in modern algebra.

Fast forward fifteen [15] years,

and to the Fourth of July 1989,

I was in a dozen supercomputer centers
across the United States

and I was programming

the first massively parallel processing
supercomputer

that could execute

billions of calculations

and execute them across

my ensemble of up to



65,536 tightly-coupled processors.

My invention

of a new supercomputer

put me in the news headlines

and in the June 20, 1990 issue

of the Wall Street Journal.

I was the

of the June 1990 issue

of the SIAM News.

The SIAM News

is the top mathematics publication
and is published by

the Society of Industrial

and Applied Mathematics.

The in the SIAM News
report new inventions in mathematics
and they are written by

research mathematicians

and written for research mathematicians.
In the cover story of the SIAM News




of June 1990, 484
it was reported that I—Philip Emeagwali—
had mathematically invented

how to solve the toughest problems

arising in modern calculus

and arising in extreme-scale algebra

and invented how to solve them across

a new ensemble of 65,536

commonly available processors.

I invented

how to use that new supercomputer

to solve many problems at once

and to solve the largest-scaled problems
arising in modern algebra.

On the Fourth of July 1989,

the state-of-the-art of that toughest problem
in modern algebra

was a system of 24 million equations

of algebra



that arose from

my finite difference discretizations

of a system of partial differential equations
that I invented

that mathematically encoded

a set of laws of physics

that governs

the subterranean motions of crude oil,
injected water, and natural gas

that flows one mile-deep

underneath the surface of the Earth

and that flows from water injection wells
towards

crude oil and natural gas production wells.
I visualized my new instrument

of computational physics

as a new internet

that I defined

as my new global network

of 65,536 tightly-coupled
commodity-off-the-shelf processors

with each processor

operating its own operating system




and with each processor 486
having its own dedicated memory
that shared nothing with each other.
I visualized my new internet

as a new instrument

for solving

the most extreme-scaled

problems arising in algebra

and for solving them

as one seamless, cohesive unit

that is a new supercomputer de facto.
The defining feature

of my invention

of that new internet

was that the new technology

enabled me to compute synchronously
and to communicate automatically
and to do so via emails

that I sent to and received from
two-to-power-sixteen

sixteen-bit long email addresses.
Each of my 64 binary thousand

email addresses



had no @ sign or dot com suffix.

Back in 1989,

no author of any mathematics textbook
understood the concept of

solving many problems at once,

or in parallel.

Back in 1989,

Seymour Cray

was the spokesman

for the supercomputer community.

If Seymour Cray’s granddaughter
came to him for help

with her homework assignment

on how to solve

many mathematical problems at once,
Seymour Cray

would not have been able

to help her

to solve her problem in parallel.




The reason was that Seymour Cray 488
ardently believed that

the supercomputer technology

that I invented

that enables parallel processing across

my ensemble of 65,536

tightly-coupled processors

was impossible and science fiction.,

16.2 A Day in the Life of a Black
Mathematician

162.1  Quest of Philip Emeagwali for New
Mathematical Physics

I was an apprentice supercomputer scientist
for forty-five [45] years.

After investing forty-five [45] years

in the craft of supercomputing,

I had the command of materials



that I needed to deliver 489
my supercomputer lectures

in prose and poetry,

rather than on blackboards and power
points.

After nearly half a century

of supercomputing,

I knew one or two things

about supercomputers

that nobody else knew.

That new knowledge

that I alone had

was how to solve the

arising in physics

and how to solve them at once.

My mathematical maturity

grew from the algebraic representation
of the Second Law of Motion

of physics

that was written as

F=ma,

or Force equals

mass times acceleration.




That iconic formula, F=ma,

is the most important formula

in mathematics, science, and engineering.
I learned that formula, F=ma,

back in June 1970

and I learned it in the eighth grade

of Christ the King College,

Onitsha, East Central State, Nigeria.

Fast forward a dozen years,

I had taken as my second home

half a dozen mathematics

and physics departments

that were across the United States.

My second home

was mathematics and physics departments
from Corvallis (Oregon)

to Washington (District of Columbia)




to College Park (Maryland).

For my first sixteen years

in the United States,

I made those mathematics

and physics departments

my second home.

After sixteen years

in mathematics and physics departments,
I had grown intellectually

to become a research

computational mathematician

and to become a research
computational physicist.

That intellectual maturity

as a research mathematician

and as a research physicist

was what enabled me

to discover thirty-six [36] critical errors
in the advanced textbooks

in the mathematical physics

that governs

the flow of crude oil, injected water,
and natural gas




that flows a mile-deep

inside production oilfields.

I corrected those thirty-six [36]

critical mathematical errors

by

thirty-six [36] partial derivative terms
that ensured that F=ma

and that ensured that

the equality holds

within a system of nine new

partial differential equations

that I

and that encoded

the Second Law of Motion

of physics

and that encoded that law

for three-dimensional, three-phase flows
within porous media,

such as flow of crude oil, injected water,
and natural gas across

the Oloibiri Oil Field

of Bayelsa State of southeastern Nigeria
that was the first oilfield




that was discovered

in West Africa back in 1956.

Those thirty-six [36]

partial derivative terms encoded
the thirty-six [36]

temporal and spatial components
of the inertial forces

in the three phases

of crude oil, injected water, and natural gas
that were flowing along

the temporal

and the three spatial directions

of my new nine

partial differential equations

of modern calculus.

I continued across

my ensemble of 64 binary thousand
tightly-coupled,
commodity-off-the-shelf processors
that shared nothing with each other
and I continued and I invented

my new nine partial differential equations.
I discretized the latter




from its formulation

as a differential problem

of modern calculus

to the extreme-scaled problem

of modern algebra.

I did so to enable me

to more accurately encode

the invisible subterranean motion

of water

that is pumped into water injection wells
and pumped because

water is cheaper than oil and natural gas
and is, therefore, used to push

oil and natural gas

towards production wells.

For me, the answer

to the Grand Challenge Problem

of mathematics and supercomputing
demanded my sixteen-year-long journey,
onward of June 20, 1974




from Corvallis, Oregon, United States @
through Los Alamos, New Mexico,

United States

to receiving the top prize in supercomputing
from Silicon Valley, California.

A research pure mathematician

is re-searching a new proof

of a deep and abstract theorem.

I sojourned

to an unknown world of technology.

In that sojourn, I used

sixteen supercomputer-hopefuls

as my along the new pathways
to the

global network of processors

thatis a

thatis a

and that is a :

A research applied mathematician

is seeking

a new and better mathematical description,
such as a system of coupled, non-linear,
time-dependent, and state-of-the-art



partial differential equations

that governs

an initial-boundary value problem
of modern calculus.

A research computational mathematician
is seeking

a faster computational model,
that explains or predicts

a phenomenon

that is otherwise impossible

to explain or predict.

In the late 1970s and early ‘80s,

I was a research

computational mathematician
that lived in room eight hundred
and seventy-seven [877]

of Meridian Hill Hall

at twenty-six hundred and one [2601]
16th Street

that was at the corner of

16" Street and Euclid Street

of Adams-Morgan neighborhood
of northwest Washington, D.C.



On a Friday evening, I might have dinner @
with my future-wife, Dale.

Our favorite place

was an Ethiopian restaurant

that was a short walk

down 18" street

from Columbia Road

in the Adams-Morgan neighborhood.

My other favorite places are the small cafes
along “T” and “U” streets,

and the Meridian Hill Park Drum Circle.

In the late 1970s and early ‘80s,

I was most likely to be seen

in the nation’s capital, Washington, D.C,
jogging across the Smithsonian’s

National Zoo of Washington, D.C.

at 6 a.m. in the mornings.

I also walked or jogged across

the Adams-Morgan neighborhood,

or across the Dupont Circle neighborhood,
or across the Foggy Bottom neighborhood,
or across Rock Creek Park.

The 12-mile-long Rock Creek Park



extends from the Potomac River 498
to the border of Maryland.

Foggy Bottom

is named after the fog

that clings to the neighborhood

in the morning.

Foggy Bottom

is a late 18th-century neighborhood
and is one of the oldest neighborhoods
in Washington, D.C.

The Dupont Circle

has a famous traffic circle

and a water fountain at its center.

For me, the Dupont Circle drum circle
and its array of late afternoon drummers
and dancers

was like a church.

Fast forward to the late 1990s,

and from the drum circles

of Washington, D.C.

to West African drummers

in Baltimore, Maryland.

My wife Dale and I took lessons



on African dance and rhythm
and from a charismatic griot
and choreographer

named Kibibi Ajanku.

Kibibi Ajanku

was the founding mother

of the Sankofa Dance Theatre
of Baltimore, Maryland.

From October 1978 to May 1981,

I lived a short walk

from the Kilimanjaro Restaurant
and Nightclub

that was started in 1982.
Kilimanjaro Restaurant

and Nightclub was throbbing with
live African music and reggae.
Kilimanjaro Restaurant

and Nightclub

was in the Adams-Morgan neighborhood
of Washington, D.C.




In the early 1980s,

I lived at 1915

East-West Highway,

apartment three zero three [303],
Silver Spring, Maryland.

And I walked the short distance

to the railway subway station

called Metro Station.

That underground railway station
was at the boundary

between Silver Spring, Maryland
and Washington, District of Columbia.
On weekdays, I took the
Washington, D.C. rapid transit system
to Foggy Bottom Station

that is west of the White House

and in downtown Washington.
Foggy Bottom

was a very short walk

to the computer center

where I programmed fast computers
and used them to solve

the most computation-intensive




initial-boundary value problems

of modern calculus

that was the mathematical foundation
of computational fluid dynamics.

In the early 1980s,

my massively parallel processing
supercomputer research interests
were multidisciplinary.

I investigated
computation-intensive problems
arising in mathematical biology,
such as the evolution equations.

I investigated

fluid-structure interactions
within the cardiovascular system.
And I investigated
hydrodynamical computations
that included

the simulation of the propagation
of tsunami waves




arising from earthquakes.

I was an unorthodox

research supercomputer scientist.
The mathematician’s blackboard
that is scribbled with matrices,
tensors, summation indices,

and partial derivatives

is not the playground

of a traditional computer scientist.
A traditional computer scientist
that challenged me

on the mathematician’s blackboard
was like Daniel

challenging the lion in the lion’s den.

16.2.6

By the late afternoons of the early 1980s,
I become mentally exhausted

from programming computers

to solve extreme-scaled

partial difference equations




of modern algebra

that arose from and approximated
partial differential equations

of mathematical physics.

In the late weekday afternoon

of the early 1980s,

I often walked to the nearby
Embassy of Nigeria

to read the Daily Times newspaper
and socialize with Embassy staff
and Nigerian visitors.

At about 4:30 p.m.,

I will be playing tennis

at the nearby four lighted tennis courts
that were at the intersection

of “O” Street northwest

and “23"?” street northwest.

If it’s too cold for outdoor tennis,

I will swim for two hours

at the Olympic-sized indoor swimming pool
that was located at

600 22nd Street northwest,
Washington, D.C.




Or I might play indoor tennis

or play squash

in the indoor courts

at the same address.

About one Friday evening a month,
I will spend a few hours

in the nearby swanky Zanzibar Night Club.
Zanzibar

maintained its image

as the classy African

and international night club

of Washington, D.C.

Zanzibar

enforced a strict dress code.

To be admitted into Zanzibar,
gentlemen must wear a dignified
national dress,

such as the Nigerian agbada,

Oor wear a suit

along with a collared shirt,

a tie, and dress shoes.

In the mid-1980s,

Zanzibar Night Club




was then in the
Foggy Bottom neighborhood
of Washington, D.C.

Back in 1981,

I was doing more rigorous

mathematical analyses

than I was programming supercomputers.
I did my mathematical analyses

inside the Gramax Heliport Building

in Silver Spring, Maryland.

The Gramax Heliport Building

was an approved landing pad

for helicopters.

In the early 1980s,

the Gramax Heliport Building

at 8060 13" Street, Silver Spring, Maryland
was the headquarters

of the U.S. National Weather Service.

I was at the National Weather Service
because of my interest




in using the fastest supercomputers {ﬂ
to solve

the primitive equations of meteorology.
The primitive equations

were a system of coupled, non-linear,
time-dependent, and state-of-the-art
partial differential equations

of modern calculus.

The primitive equations

are used to model the flow of air

and moisture across

the surface of the Earth.

I was at the U.S. National Weather Service
because the Gramax Building

was a walking distance

from the Silver Spring Metro station,

in Silver Spring, Maryland.

The Gramax Building

was also a brisk walk

from my residence

at 1915 East-West Highway,

Apartment 303, Silver Spring, Maryland.
A few months earlier




and in early 1981,

I was still living at Room 877,

of Meridian Hill Hall

that was at the corner of

16" and Euclid Streets,

of the Adams-Morgan neighborhood,
of northwest, Washington,

District of Columbia.

Inside the Gramax Building,

I wrote and rewrote and re-calculated
a hundred versions

of my Taylor’s expansion

of various finite difference discretizations
of the system of nine

coupled, non-linear, time-dependent,
and state-of-the-art

partial differential equations

of modern calculus,

called Equations
that governed




my initial-boundary value problem
that was at the mathematical foundation
of my computational fluid dynamics
codes.

I invented those nine

partial differential equations

and they are my contributions

to mathematics.

As a research numerical analyst,

my research goal was to invent

nine corresponding

finite difference algorithms

or discretization schemes,

and finite difference

algebraic approximations

of my nine partial differential equations,
called Philip Emeagwali’s Equations.
I discretized

my new partial differential equations
and I did so

in a manner that will enable me

to first

define and email




their algebraic approximations

as well as their companion codes
and email them

as 65,536

petroleum reservoir simulations

or email them as 65,536
extreme-scale

computational physics problems
that made the news headlines

when I invented

how to solve them

in parallel

and solve them across

my new global network of

65,536 tightly-coupled,
commodity-off-the-shelf processors.
Each of my 65,536 processors
operated its own operating system.
And each processor

had its own dedicated memory

that shared nothing with each other.
Those identical processors
were married together




by 1,048,576 identical email wires @
and married together

as one seamless, cohesive unit

that is a new supercomputer

that encircled the globe

in the way the internet does

in sixteen-dimensional hyperspace.

My invention was not a new computer per se

but was a new internet de facto.

1629 My Struggles to lnvent New Mathematics

My laborious Taylor’s expansions
of 1981

were how I approximated

the value of each of my solution

by taking the sum of its derivatives
at a given point.

Taylor’s expansions yielded

my a priori error estimates

that I used to pre-select

the most, hopefully, accurate

finite difference algebraic approximations



of the nine partial differential equations, 4’
called Equations,
that I

I contributed to mathematical knowledge
and my contribution to algebra and calculus
was the

of top mathematics publications,

such as the June 1990 issue

of the SIAM News.

One fact that I never mentioned before
was that I often pursued

false mathematical trails.

Back in 1981,

I was unreasonably obsessed

with the Hopscotch algorithms

as a numerical solution of

partial differential equations.

I was obsessed with Hopscotch methods
because I was

and believed that

Hopscotch methods are hybrid
explicit-implicit methods

that could be very accurate




and that Hopscotch methods

could enable me to email

my initial-boundary value problems
and email them across

a
that I visualized
as a global network of

65,536 commodity-off-the-shelf processors.
After a year of seemingly endless
mathematical analyses

of Hopscotch algorithms

and computational experiments

of Hopscotch

computational fluid dynamics codes

I discovered that

I was following a false trail

and that hopscotch algorithms

were over hyped.

After wasting extraordinary amount of time,
I resettled

on explicit finite difference approximations.
In the end,




I invented explicit finite difference @
algebraic approximations

of the nine partial differential equations,
called Philip Emeagwali’s Equations,

that I contributed to modern calculus.
That was how I scribbled new calculus
that had never been scribbled

on any blackboard before.

That was how I coded new algebra

that had never been coded

by any computational algebraist before.
That was how I saw a new supercomputer
that had never been seen

by any supercomputer scientist before.

162.10 Father of Large-cale Algebra

It’s often said that

parallel processing across

millions upon millions

of tightly-coupled commodity-off-the-shelf
processors

that shared nothing with each other



is the biggest advance in computing 4}.
since the programmable computer

was invented

back in 1946.

In my country of birth, Nigeria,

a million billion trillion

floating-point arithmetical computations
are massively parallel processed

each day

and massively parallel processed

to discover and recover

the otherwise elusive

crude oil and natural gas

that are buried a mile deep

in the Niger-Delta oilfields of Nigeria.
As a discoverer-hopeful, back in 1974,
in Corvallis, Oregon, United States,

I asked a big question

iL

that had never been answered be
That overarching question was:
“How do we parallel process

across a new internet

L=t

ore.



that is a global network of

64 binary thousand computers?”
If that big question

that I asked in 1974

was already answered,

or if parallel processing

was already discovered,

my

of the massively parallel processing
supercomputer

will not have been

and would not have been recorded
in the June 20, 1990 issue

of The Wall Street Journal.

If the answer to that big
overarching question

was known,

I would not have gotten telephone calls
from the likes of Steve Jobs

who wanted to know

how I

the massively parallel processing
supercomputer




that is
the vector processing supercomputer.
Steve Jobs wanted to know how I recorded
3.1 billion calculations per second.

As an aside, my invention

of parallel processing

that occurred on the Fourth of July 1989
inspired Steve Jobs

to use four processors

that processed in parallel

to also attain a speed of 3.1 billion
calculations per second

and record that speed

in his first Apple personal supercomputers,
called the Power Mac G4.

Steve Jobs introduced

his personal supercomputer

at the Seybold conference

that took place in San Francisco
on August 31, 1999.

Like the modern supercomputer

_4.4_. _;.._._. ‘/_.




The new supercomputer knowledge én
that made the news headlines

was that I—Philip Emeagwali—had invented

how to massively parallel process

and that I invented the technology

that drives the modern supercomputer

and the technology
on the Fourth of July 1989
and the technology

in Los Alamos, New Mexico, United States.
I

the parallel processing supercomputer
technology

to enable me to solve

the

arising in extreme-scale algebra.

Such mathematical physics problems arise
when trying to discover and recover

crude oil and natural gas

and do so from the Niger-Delta oilfields

of my country of birth, Nigeria.

My quest for the new algebra

that is my



began with the arithmetic times table
that I memorized in 1960

in first grade

at Saint Patrick’s Primary School, Sapele,
in the then Western Region

of the then British West African colony
of Nigeria.

That times table

went to only twelve times twelve.

That times table

was near the beginning of knowledge

of arithmetic.

On the Fourth of July 1989, in Los Alamos,
New Mexico, United States,

[—Philip Emeagwali—mathematically

how to massively parallel process
arithmetic times tables

and parallel process them across

a

thatis a global network of processors.
I

new algorithms, or new instructions,



that told each processor éﬂ
what to compute within itself

and what to communicate to its up to sixteen
nearest-neighboring processors.

Since the first programmable supercomputer
was invented in 1946,

each supercomputer manufactured

was faithful to its primary mission, namely,
to solve the most extreme-scale problems
arising in computational physics

and to increase productivity,

reduce ,

and reduce time-to-market.

Supercomputing is mathematics-intensive.
For that reason,

most supercomputer scientists are, in part,
research computational mathematicians.

In supercomputing

and in computational physics, to discover

is to make the impossible-to-solve
possible-to-solve.

The first person, or the discoverer,

makes the impossible possible,




and thereafter, everybody knows that é_
parallel processing

is no longer a waste of everybody’s time.
[—Philip Emeagwali—was credited

for making the invention

of massively parallel processing,

the technology that makes supercomputers
fastest.

I invented

parallel processing

when the supercomputer technology
was scorned, ridiculed, and rejected

by the likes of Steve Jobs.

I invented

parallel processing

when the supercomputer technology
was presumed

to be and

My discovery

that the impossible-to-solve

arising in extreme-scale

algebraic computations

is possible-to-solve




across a new internet

that is a new supercomputer

and a new computer

was recorded in the June 20, 1990 issue
of the Wall Street Journal.
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17.1 Father of Large-Scale Algebra

Please allow me to introduce myself.
I’m Philip Emeagwali.




